專利名稱:一種以納米材料體外誘導(dǎo)間充質(zhì)干細(xì)胞向成骨細(xì)胞分化的方法及金納米粒子的用途及分化劑的制作方法
技術(shù)領(lǐng)域:
本發(fā)明涉及的部分參考文獻(xiàn)
1.Paciotti G F,Myer Lj Weinreich Dj et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery, 2004, 11: 169—183.
2.Yang N,Sun W H. Gene gun and other non-viral approaches for cancer gene therapy. Nat Medj 1995,1: 481—483.
3.De Jong W H,Hagens W I,Krystek P, et al. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterialsj 2008,29: 1912—1919.
4.Kaplan F S,Hayes W C,Keaveny T M,et al. In: Simon S R,ed. Orthopedic Basic Science. Rosemont: American Academy of Orthopaedic Surgeons, 1994. 127— 185
5.GrislainL, Couvreur P, Lenaerts V, et al. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharmj 1983,15:335—345.
6.Tsai CYj Shiau ALj Chen SYj Chen YHj Cheng PC, Chang MY, Chen DHj Chou CHj Wang CRj Wu CL Amelioration of collagen-induced arthritis in rats by nanogold Arthritis Rheum. 2007 Feb;56 (2):544-54.
7.Jaeger GTj Larsen S, S0Ii N,Moe L. Two years follow-up study of the pain-relieving effect of gold bead implantation in dogs with hip-joint arthritis. arthritis. Acta Vet Scand. 2007 Mar 23;49:9.
8.Pissuwan D, Valenzuela SMj Cortie MB. Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 2006 Feb; 24(2) :62-7. Epub 2005 Dec 27.
9.Jacob D. Gibson, Bishnu P. Khanal, and Eugene R. Zubarev Paclitaxel-Functionalized Gold Nanoparticles J. Am. Chem. Soc. 2007, 129, 11653-11661 doi:10.1021/ja075181k
10.QianjXimei. "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. 〃 Nature Biotechnology. 2008. Vol 26 No 1.
11.Chow, M. K. ; Zukoskij C. F. Gold Sol Formation Mechanisms: Role of colloidal Stability. J. Colloid Interface Sci. 1994,165,97 - 109.
12.Pockwinsej S. ; Wilmingj L ; Conlonj D. ; Stein, G. S. ; Lianj J. B. Expression of Cell-Growth and Bone Specific Genes at Single Cell Resolution during Development of Bone Tissue-Like Organization in Primary Osteoblast Cultures. J. Cell. Biochem. 1992,49,310 - 323.
13.Abdallahj B. M. ; Jensen, C. H. ; Gutierrez, G. ; Leslie, R. G. Q. ; Jensen,T. G. ; Kassemj M. Regulation of Human Skeletal Stem Cells Differentiation by Dlkl/Pref-1. J. Bone. Miner. Res. 2004,19,841 — 852.
14.Stein, G. S. ; Lianj J. B. Molecular Mechanisms Mediating Proliferation / Differentiation Interrelationships during Progressive Development of the Osteoblast Phenotype. Endocr. Rev. 1993,14,424 - 442.
15.Prabhakaranj M. P. ; Venugopalj J. R. ; Ramakrishnaj S. Mesenchymal Stem Cell Differentiation to Neuronal Cells on Electrospun Nanofibrous Substrates for Nerve Tissue Engineering. Biomaterials 2009,30,4996 - 5003.
16.Kaurj G. ; Valarmathij Μ. Τ. ; Potts, J. D. ; Wang, Q. The Promotion of Osteoblastic Differentiation of Rat Bone Marrow Stromal Cells by a Polyvalent Plant Mosaic Virus. Biomaterials 2008, 29, 4074 - 4081.
17.Popatj K. C. ; Chatvanichkulj K. I. ; Barnes, G. L ; Latempaj Τ. J.; Grimes, C. Α. ; Desaij Τ. A. Osteogenic Differentiation of Marrow Stromal Cells Cultured on Nanoporous Alumina Surfaces. J. Biomed. Mater. Res. Part A 2006, 80A,955 - 964.
18.Wang D,Christensen K,Chawla K,et al. Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential. Bone Miner Res, 1999, 14: 893—903.
19.Stein G S,Lian J B. Molecular mechanisms mediating proliferation/ differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr Rev, 1993,14: 424—442.
20.Collin P,Nefussi J R,Wetterwald A,et al. Expression of collagen, osteocalcin, and bone alkaline phosphatase in a mineralizing rat osteoblastic cell culture. Calcif Tissue Intj 1992,50: 175—183.
21.Obrant K J, Ivaska K K, Gerdhem P, et al. Biochemical markers of bone turnover are influenced by recently sustained fracture. Bone, 2005, 36: 786一 792.
22. Veitch S W, Findlay S C,Hamer A J,et al. Changes in bone mass and bone turnover following tibial shaft fracture. Osteoporos Intj 2006, 17: 364——372。
權(quán)利要求
1.一種以納米材料體外誘導(dǎo)間充質(zhì)干細(xì)胞向成骨細(xì)胞分化的方法,其特征在于包括以下步驟(1)骨髓間充質(zhì)干細(xì)胞的分離純化;(2)擴(kuò)充間充質(zhì)干細(xì)胞,培養(yǎng)至80-90%融合時(shí),更換含胎牛血清的DMEM培養(yǎng)液,加入 β -甘油磷酸鈉,抗壞血酸和地塞米松,同時(shí)加入納米材料進(jìn)行誘導(dǎo)。
2.根據(jù)權(quán)利要求1所述的的方法,其特征在于所述的誘導(dǎo)采用的胎牛血清的濃度不低于10%。
3.根據(jù)權(quán)利要求1所述的的方法,其特征在于所述的誘導(dǎo)采用甘油磷酸鈉,抗壞血酸和地塞米松的濃度分別為10 mmol/L,0. 15 mmol/L及1X10_8 mol/L。
4.根據(jù)權(quán)利要求1所述的的方法,其特征在于所述的誘導(dǎo)采用納米材料為金納米粒子。
5.根據(jù)權(quán)利要求4所述的的方法,其特征在于所述的誘導(dǎo)采用金納米粒子粒經(jīng)為 20nm 至 40nm。
6.根據(jù)權(quán)利要求4所述的的方法,其特征在于所述的誘導(dǎo)采用金納米粒子濃度為 1. 5X10"4, 3. OXlO"5 或 1. 5X10"5Mmol/Lo
7.根據(jù)權(quán)利要求1所述的的方法,其特征在于所述的誘導(dǎo)時(shí)間為7至21天。
8.—種金納米粒子的用途,其特征在于金納米粒子用于納米材料體外誘導(dǎo)間充質(zhì)干細(xì)胞向成骨細(xì)胞分化中,具體包括以下步驟(1)骨髓間充質(zhì)干細(xì)胞的分離純化;(2)擴(kuò)充間充質(zhì)干細(xì)胞,培養(yǎng)至80-90%融合時(shí),更換含胎牛血清的DMEM培養(yǎng)液,加入 β -甘油磷酸鈉,抗壞血酸和地塞米松,同時(shí)加入金納米粒子進(jìn)行誘導(dǎo)。
9.一種促細(xì)胞分化劑,其特征在于包括β-甘油磷酸鈉、抗壞血酸、地塞米松和納米材料。
10.根據(jù)權(quán)利要求9所述的分化劑,其特征在于β-甘油磷酸鈉,抗壞血酸和地塞米松的濃度分別為10 mmol/L, 0. 15 mmol/L及1 X 1(Γ8 mol/L ;納米材料為金納米粒子,濃度為 1. 5X10"4, 3. OXlO"5 或 1. 5X10"5Mmol/Lo
全文摘要
本發(fā)明涉及金納米粒子在誘導(dǎo)間充質(zhì)干細(xì)胞(MSC)體外定向分化方面的用途,利用納米材料對(duì)間充質(zhì)干細(xì)胞進(jìn)行體外誘導(dǎo)分化,以不同粒徑及濃度的金納米粒子材料對(duì)間充質(zhì)干細(xì)胞進(jìn)行體外誘導(dǎo)定向分化為成骨細(xì)胞。
文檔編號(hào)C12N5/0775GK102329772SQ20111021969
公開(kāi)日2012年1月25日 申請(qǐng)日期2011年8月2日 優(yōu)先權(quán)日2011年8月2日
發(fā)明者梁文瑛 申請(qǐng)人:港龍生物科技有限公司