使用沸石-斜發(fā)沸石在上流式厭氧消化器與污泥床中對(duì)廢水進(jìn)行厭氧消化的方法
【專利摘要】本申請(qǐng)涉及這樣的方法:在上流式厭氧反應(yīng)器與污泥床(UASB)中使用斜發(fā)沸石型沸石以獲得顆粒狀活性污泥,從而提高污泥的密度并因而改進(jìn)其沉降特性,以及通過(guò)微生物的固定化提高反應(yīng)器內(nèi)的生物量,以實(shí)現(xiàn)與迄今為止使用的不含沸石的相同類型反應(yīng)器相比有機(jī)材料去除效率的提高并且生物氣產(chǎn)生(60%至70%甲烷)提高超過(guò)20%,使得可以使用這樣的反應(yīng)器來(lái)處理含有高濃度的蛋白質(zhì)、氨基酸和其他含氮化合物的廢水,其通過(guò)使用沸石-斜發(fā)沸石防止對(duì)該過(guò)程有害的氮積累,即氨氮與在斜發(fā)沸石晶體結(jié)構(gòu)的特定點(diǎn)中存在的堿金屬及堿土金屬的交換,以及還防止產(chǎn)生絲狀細(xì)菌,所述絲狀細(xì)菌難以容納在反應(yīng)器內(nèi)并降低其效率。
【專利說(shuō)明】使用沸石-斜發(fā)沸石在上流式厭氧消化器與污泥床中對(duì)廢 水進(jìn)行厭氧消化的方法
【技術(shù)領(lǐng)域】
[0001] 本發(fā)明涉及一種通過(guò)添加負(fù)責(zé)有機(jī)物質(zhì)之厭氧降解的活性沸石-斜發(fā)沸石 (zeolite-clinoptiIolite)污泥在上流式厭氧消化器與污泥床(upf low anaerobic digester and sludge blanket, UASB)中進(jìn)行厭氧消化的方法。該沸石以占楽料總體積的 15%至23%的比例添加,該量足以在反應(yīng)器中實(shí)現(xiàn)較好的污泥停留以及所需量的氮的去除 以防止由該化合物導(dǎo)致的抑制過(guò)程。所用沸石必須是斜發(fā)沸石型,因?yàn)樾卑l(fā)沸石由于其作 為離子交換劑的特性而具有較高的去除氨氮的能力。
【背景技術(shù)】
[0002] 上流式厭氧消化器和覆層(mantle)廣泛用于處理來(lái)自不同領(lǐng)域(feature)的廢 水,例如生活污水或餐飲業(yè)污水(served sewage),來(lái)自蒸饋間(distillery)的廢水,來(lái)自 制糖產(chǎn)業(yè)、罐頭產(chǎn)業(yè)、咖啡產(chǎn)業(yè)(benefit Of coffee)、乳制品、軟飲料、藥物生產(chǎn)、填埋場(chǎng)滲出 物(landfill leachate)、淀粉生產(chǎn)、酵母生產(chǎn)、釀酒以及紙張生產(chǎn)的廢水。在這些情況下,已 經(jīng)獲得了較高的有機(jī)物質(zhì)去除效率,其值為70%至85%。然而,該方法在應(yīng)用于含有高濃 度蛋白質(zhì)或銨的廢水(例如,在魚(yú)加工產(chǎn)業(yè)、畜牧設(shè)施、肉類制品加工廠、動(dòng)物的屠宰、氮肥 的生產(chǎn)等中產(chǎn)生的那些)時(shí)失效,因?yàn)檫@些高濃度蛋白質(zhì)或銨妨礙所產(chǎn)生的絲狀結(jié)構(gòu)中顆 粒的形成(Sanchez 等,1995 ;Hulshoff 等,2004 ;Tada 等,2005 ;Montalvo 等,2012)。這導(dǎo) 致不良的污泥沉降特性和低去除效率。在另一方面,高濃度的有機(jī)氮和銨導(dǎo)致厭氧消化的 抑制,這直接影響有機(jī)物質(zhì)的低去除效率和低甲烷產(chǎn)生。
[0003] 有一些報(bào)道表明,當(dāng)氨氮的濃度超過(guò)1000mg/l時(shí),顆粒狀污泥的形成受到嚴(yán)重影 響。當(dāng)廢水具有高蛋白質(zhì)濃度并且化學(xué)需氧量(chemical oxygen demand, C0D)比例:氮 (N)低于 30 : 1 時(shí),還發(fā)生抑制過(guò)程(Sanchez 等,1995 ;Hulshoff 等,2004 ;Tada 等,2005 ; Montalvo 等,2012)。
[0004] 沸石斜發(fā)沸石已被用于控制含有高濃度有機(jī)氮的廢水中氨氮的形成(Bernal Μ. Ρ. , Lopez-Real J. Μ. 1993. Natural zeolites and sepiolites as ammonium and ammonia adsorbent materials. Bioresource Technology. 43,27-33 ;Bernal M. P. , Lopez-Real J. M. , Scott K. M. 1993. Application of natural zeolites for the reduction of ammonia emissions during the composting of organic wastes in a laboratory composting simulator Bioresource Technology. 43,35-39 ;Borja R. , Sanchez E. , Weiland P., Travieso L. 1993. Effect of ionic exchanger addition on the anaerobic digestion of cow manure. Environmental Technology. 14,891-896 ;Borja R. , Sanchez E. , Weiland P., Travieso L. , Martin A. 1993. Effect of natural zeolite support on the kinetics of cow manure anaerobic digestion. Biomass and Bioenergy. 5,395-400 ;Borja R. , Sanchez E., Weiland P. , Travieso L. , Martin A. 1994. Kinetics of anaerobic digestion of cow manure with biomass inmobilized on zeolite. Biochemical Engineering Journal. 54, B9-B14 ;Sanchez E. , Milan Z. , Borja R. , Weiland P. , Rodriguez X. 1995. Pigggery waste treatment by anaerobic digestion and nutrient removal by ionic Exchange. Resources, Conservation and Recycling. 15,235-244 ;Borja R. , Sanchez E. , Duran Μ. M. 1996. Effect of the clay mineral zeolite on ammonia inhibition of anaerobic thermophilic reactors treating cattle manure. 1996.Journal of Environmental Science and Health. A31 (2), 479-500 ;Milan Z. , Sanchez E. ,Weiland P. , de Las Pozas C., Borja R. , MayariR. , Rovirosa N. 1997. Ammonia removal from anaerobically treated piggery manure by ion exchange in columns packed with homoionic zeolite.The chemical Engineering Journal. 66,65-71 ;Μ?1?η Z. ,Sanchez E. ,Borja R. , Ilangovan K., Pellon A. , Rovirosa N. ,. Weiland P. , Escobedo R. 1999. Deep bed filtration of anaerobic cattle manure effluents with natural zeolite. Journal of Environmental Science and Health.B34(2),305-332 ;Fernandez N. , Fernandez-Polanco F, Montalvo SJ, Toledano D. 2001. Use of activated carbon and natural zeolite assupport materials, in an anaerobic fiuidized bed reactor, for vinasse treatment. Water Science and Technology44,1-6 ;Milan Z. , Sanchez E. , Borja R. , Weiland P. , Cruz M.2001. Synergistic effect of natural and modified zeolites on the methanogenesis of acetate and methanol. Biotechnology Letters,23,559-562 ;Milan Z. , Sanchez E. ,. Weiland P. ,Borja R. ,Martin A. , Ilangoban K. 2001. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste. Bioresource Technology. 80,37-43 ;Μ?1?η Z, Villa P, Sanchez E, Montalvo S, Borja R, Ilangovan K. 2003.Effect of natural and modified zeolite onanaerobic digestion of piggery waste. Water Science and Technology. 48,263-9 ;Du Q. , Liu S. J. , Cao Z. H. , Wang Y. Q. 2005. Ammonia removal fromaqueous solution using natural Chinese clinoptilolite. Separation and Purication Technology. 44,229-234 ;Montalvo S, Diaz F. Guerrero L, Sanchez E, Borja R. 2005. Effect of particle size and doses of zeolite additionon anaerobic digestion processes of synthetic and piggery wastes. Process Biochemistry. 40, 1475-81 ;Sarioglu, M. 2005. Removal of ammonium frommunicipalwastewater usingnatural Turkish (Dogantepe) zeolite. Separation and Purification Technology. 41,1-11 ;Tada C. , Yang Y. , Hanaoka T. , Sonoda A. , Ooi K., Sawayama S. 2005. Effect of natural zeolite on methane production from anaerobic digestion of ammonium rich organic sludge. Bioresurce Technology. 96,459-464 ; Montalvo S. , Guerrero L. , Borja R. , Travieso I. , Sanchez E. , Diaz F. 2006. Use of natural zeolite at different doses and dosage procedures in batch and continuous anaerobic digestion of synthetic and swine wastes. Resources, Conservation and Recycling. 47,26-41 ;Guo X.,Zeng L.,Li X. , Par H. S. 2008. Ammonium and potassiumremoval for anaerobically digested wastewater using natural clinoptilolita followed bymembrane pretreatment. Journal of Hazard Materials. 151, 125-133 ;Hedstrom A. , Amofah L. R.2008. Adsorption and desorption of ammoniumby clinoptilolite adsorbent in municipal wastewater treatmentsystems. Journal of Environmental Engineering. Science. 7,53-61 ; 0. ? Nikolaeva, S. , Sanchez, E. , Bor ja, R. , Raposo, F. 2008. Treatment of screeneddairy manure by upflow anaerobic fixed bed reactors packed with waste tyrerubber and a combination of waste tyre rubber and zeolite :effect of the hydraulicretention time. Bioresource Technology99, 7412-7417 ;Wang Y. , Lin F. , Pang W. ,2008. Ion exchange of ammonium in natural and synthesized zeolites. Journal of Hazardous Materialsl60, 371-375 ;Chang W. S. , Tran H. T. , Park D. H. , Zhang R. H. , Ahn D. H. 2009. Ammoniumnitrogen removal characteristics of zeolite media in a biological aerated filter (BAF) for the treatment of textile wastewater. Journal of Industrial Engineering. Chemistry. 15, 524-528 ;Nikolaeva, S. , Sanchez,E. ,Borja,R. ,Raposo,F. , Colmenarejo,M. F. ,Montalvo, S. , Jimenez-Rodriguez, A. M. 2009. Kinetics of anaerobic degradation of screened dairy manure by upflow fixed bed digesters :effect of natural zeolite addition. Journal of Environmental. Science and Health. Part A44,146-150 ;WeiY. X. , LiY. F. , Ye Z. F. 2010. Enhancement of removal efficiency of ammonia nitrogen in sequencing batch reactor using natural zeolite. Environmental Earth Science. 60,1407-1413 ;Montalvo S. , Guerrero L. , Borja R. , Sanchez E. , Milan Z. , Cortes I. , Angeles de la Rubia M. 2012. Application of natural zeolites in anaerobic digestion process :A Review. 2012. Apply Clay Science. 58,125-133)。在牛排泄物(residual bovine)的厭氧消化中添加沸 石-斜發(fā)沸石防止了氨之存在的抑制作用并且有助于微生物的固定化(BorjaR.,Sdinchez E. , Weiland P. , Travieso L. 1993. Effect of ionic exchanger addition on the anaerobic digestion of cow manure. EnvironmentalTechnology. 14,891-896)。對(duì)厭氧消化動(dòng)力學(xué)進(jìn) 行了研究,將小牛排泄物(residual veal)在含有沸石-斜發(fā)沸石支持物的間歇型消化器 (batch digester)中以及不含沸石支持物的對(duì)照中完全混合,表明沸石-斜發(fā)沸石消化器 支持物所用恒定速率為反應(yīng)恒定對(duì)照的幾乎兩倍(Borja R.,Sdinchez E.,Weiland P., Travieso L. 1993. Effect of ionic exchanger addition on the anaerobic digestion of cow manure Environmental Technologyl4,891_896)。在連續(xù)運(yùn)行的消化器中進(jìn)行了相同 的研究并且觀察到了相同的行為。此外,當(dāng)添加沸石-斜發(fā)沸石時(shí),氨氮濃度顯著較低 (Borja R. , Sanchez E. , Weiland P. , Travieso L. , Martin A. 1994. Kinetics of anaerobic digestion of cow manure with biomass inmobilized on zeolite.Biochemical Engineering Journal. 54, B9-B14)。用豬廢水(swine wastewater)進(jìn)行了類似的研究,結(jié) 果與用牛排泄物獲得的那些結(jié)果非常相似(Sdmchez E.,Mildin z.,Borja R.,Weiland P., Rodriguez X. 1995. Pigggery waste treatment by anaerobic digestion and nutrient removal by ionic Exchange. Resources,Conservation and Recycling. 15,235-244) 〇 對(duì)通 過(guò)厭氧消化處理之后沸石去除豬和牛廢水中氨氮的能力進(jìn)行了研究,表明氨氮的去除效率 為約 90 % (Μ--?η Z.,ScSnchez E.,Weiland P.,de Las Pozas C.,Borja R.,MayariR., Rovirosa N. 1997. Ammonia removal from anaerobically treated piggery manure by ion exchange in columns packed with homoionic zeolite.The chemical Engineering Journal. 66,65-71 ;MilanZ. , Sanchez E. , Bor ja R. , Ilangoban K. , Pellon A. , Rovirosa N. , .Weiland P. , Escobedo R. 1999. Deep bed filtration of anaerobic cattle manure effluents with natural zeolite.Journal of Environmental Science and Health. B34 (2), 305-332 ;Milan Z. , Sanchez E. , Borja R. , Weiland P. , Cruz M. 2001. Synergistic effect of natural and modified zeolites on the methanogenesis of acetate and methanol. Biotechnology Letters, 23, 559-562 ;Milan Z. , Sanchez E. ,. Weiland P. ,Borja R.,Martin A.,Ilangoban K. 2001. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste.Bioresource Technology. 80,37-43 ;Μ?1?η Z, Villa P, Sanchez E, Montalvo S, Borja R, Ilangovan K. 2003.Effect of natural and modified zeolite onanaerobic digestion of piggery waste. Water Science and Technology48, 263-9)。已表明,天然沸石的添加降低氮的濃度 并且有助于通過(guò)多種廢物的厭氧消化生產(chǎn)甲烷,即使對(duì)于具有高濃度氮的廢物亦如此 (Milan Z. , Sanchez E. , Borja R. , Weiland P. , Cruz Μ. 2001. Synergistic effect of natural and modified zeolites on the methanogenesis of acetate and methanol. Biotechnology Letters, 23, 559-562 ;Μ?1?η Z, Villa P, Sanchez E, Montalvo S, Borja R, Ilangovan K. 2003. Effect of natural and modified zeolite onanaerobic digestion of piggery waste. Water Science and Technology. 48,263-9 ;Tada C. , Yang Y. , Hanaoka T., Sonoda A. , Ooi K. , Sawayama S. 2005. Effect of natural zeolite on methane production from anaerobic digestion of ammonium rich organic sludge.Bioresurce Technology. 96,459-464 ;Kotsopoulos,T. A.,Karamanlis,X.,Dotas,D.,Martzopoulos, G. G. 2008.The impact ofdifferent natural zeolite concentrations on the methane production in thermophilicanaerobic digestion of pig waste. Biosystems Engineering99,105-111 ;Wei β S.,Tauber M.,Somitsch W.,Meincke R.,Muller H.,Berg G. , Guebitz G. M. ,2010.Enhancement of biogas production by addition of hemicellulolytic bacteria immobilizedon active zeolite.Water Research44, 1970-1980 ;Wei β,S.,Zankel,A.,Lebuhn,M.,Petrak,S.,Somitsch,W.,Guebitz, G. M. 2011. Investigation of microorganisms colonizing activated zeolites during anaerobic biogas production from grass silage.Bioresource Technologyl02, 4353-4359 ;Montalvo S. ,Guerrero L. ,Borja R. ,Sanchez E. ,Milan Z. ,Cortes I. ,Angeles de la Rubia M. 2012. Application of natural zeolites in anaerobic digestion process :A Review. 2012. Apply Clay Science. 58,125-133)〇
[0005] 文獻(xiàn) Mery C.,Guerrero L,Alonso-Gutierrez J.,F(xiàn)igueroa M.,Lema J. M., Montalvo S. , Borja R. 2012. Evaluation of zeolite as microorganism support medium in nitrifying batch reactors :Influence of zeolite particle size.Journal of Environmental Science and Health. A47,420-427. Research. 62, 71-76 比較了具有不同粒 徑的沸石的離子交換能力,并且示出最佳尺寸范圍為〇. 5mm至1mm。在這些情況下,就較大 的粒徑而言達(dá)到了大于64 %的氨氮去除效率。Montalvo S.,Guerrero L,Borja R. Sdinchez E. , Milan Z. , Cirtes I. , Angeles de la Rubia M. 2012. Application of natural zeolites in anaerobic digestion process :A Review. 2012. Apply Clay Science. 58,125-133對(duì)沸石 在多種類型廢水的厭氧消化期間防止氨的抑制中的應(yīng)用進(jìn)行了綜述。在這篇文章中證實(shí)了 沸石在控制所述抑制中的有效性能及其固定化厭氧微生物的能力。
[0006] 已經(jīng)對(duì)添加沸石對(duì)微生物固定化的影響進(jìn)行了研究,并且在需氧過(guò)程和厭氧過(guò)程 二者中都獲得了令人滿意的結(jié)果(Borja y col.,2003 ;Fernc5ndez N.,F(xiàn)erncSndez-Polanco F, Montalvo SJ, Toledano D. 2001. Use of activated carbon and natural zeolite as support materials, in an anaerobic fluidized bed reactor, for vinasse treatment. Water Science and Technology44,1-6 ;He S. B. , Xue, G. , Kong Η. N. 2006. Zeolite powder addition to improve the performance of submerged gravitation-filtration membrane bioreactor. Journal of Environmental. Science. 18,242-247 ;He S. B. , Xue G. , Kong H. N. , Li X. 2007. Improving the performance of sequencing batch reactor (SBR) by the addition of zeolite powder. Journal of HazardMaterials. 142,493-499 ; Ijlliana, 0., Nikolaeva, S. , Sanchez, E. , Borja, R. , Raposo, F. 2008. Treatment of screened dairy manure by upflow anaerobic fixed bed reactors packed with waste tyrerubber and a combination of waste tyre rubber and zeolite :effect of the hydraulic retention time. Bioresource Technology99,7412-7417 ;Nikolaeva, S. , Sanchez, E. , Borja, R., Raposo,F. , Colmenare jo, M. F. , Montalvo, S. , Jimenez-Rodri guez, A. M. 2009. Kinetics of anaerobic degradation of screened dairy manureby upflow fixed bed digesters :effect of natural zeolite addition. Journal of Environmental. Science and Health. Part A44, 146-150 ; Jiang Y. F. , Liu D. H. , Sun T. X. , Chen J. M. 2010. Process characteristics of zeolite media biological aerated filter for treating aquaculture wastewater. Huanjing Kexue/Environmental Science. 31,703-708 ;Wei β S. , Tauber M. , Somitsch W., Meincke R. , Miiller H. , Berg G. , Guebitz G. M. , 2010. Enhancement of biogas production by addition of hemicellulolytic bacteria immobilizedon active zeolite. Water Research44,1970-1980 ;Wei β,S.,Zankel,A.,Lebuhn,M.,Petrak,S.,Somitsch,W., Guebitz, G. M. 2011. Investigation of microorganisms colonizing activated zeolites during anaerobic biogas production from grass silage. Bioresource Technologyl02, 4353-4359 ;Mery y col. , 2011 ;Montalvo S. , Guerrero L. ,Borja R. , Sanchez E. ,Milan Z., Cortes I. , Angeles de la Rubia M. 2012. Application of natural zeolites in anaerobic digestion process :A Review. 2012. Apply Clay Science. 58,125-133) 〇
[0007] 前述文獻(xiàn)綜述披露,尚沒(méi)有與在作為公知位置(例如UASB制品)的上流式厭氧消 化器與覆層中使用斜發(fā)沸石型沸石相關(guān)的文獻(xiàn),也沒(méi)有任何與諸如本發(fā)明的方法相關(guān)的專 利。
【發(fā)明內(nèi)容】
[0008] 本發(fā)明涉及一種通過(guò)添加負(fù)責(zé)有機(jī)物之厭氧降解的顆粒狀沸石-斜發(fā)沸石活化 的污泥來(lái)在上流式厭氧消化器與污泥床(UASB)中進(jìn)行厭氧消化的方法。該沸石以占漿料 總體積的15%至23%的比例添加,該量足以在反應(yīng)器中獲得較好的污泥停留以及所需量 的氮的去除以防止由該化合物導(dǎo)致的抑制量過(guò)程。所用沸石必須是斜發(fā)沸石型,因?yàn)樾卑l(fā) 沸石因其作為離子交換劑的性能而具有高的去除氨氮的能力。
[0009] 在曾使用沸石的其他反應(yīng)器(厭氧過(guò)濾器和流化過(guò)濾器)中未曾旨在處理具有高 水平氮的廢水,也未曾獲得具有生物肥料特性的殘余物,更不必提在反應(yīng)器中獲得較好的 污泥成粒,其中成粒是UASB反應(yīng)器的顯著特性。
[0010] 此外,本專利的目的是解決UASB反應(yīng)器由于未能形成沉淀以及因進(jìn)行微生物的 洗滌而使效率降低從而無(wú)法用于含有高濃度蛋白質(zhì)和/或氨氮的廢水的難題。
[0011] 與應(yīng)用于廢水的任何其他類型的反應(yīng)器相比,UASB反應(yīng)器以較低的停留時(shí)間運(yùn) 行,因此,將UASB反應(yīng)器的結(jié)果與其他反應(yīng)器的結(jié)果進(jìn)行比較是不可能或不實(shí)際的。
【專利附圖】
【附圖說(shuō)明】
[0012] 圖1示出上流式厭氧消化器與污泥床的圖,其中(1)是生物氣,(2)是沸石,(3)是 流出物,(4)是流入物,(5)是生物氣導(dǎo)流器,(6)是沉降分離器生物氣以及(7)是經(jīng)消化的 污泥。
[0013] 圖2和3示出電子顯微鏡顯微圖,其中在不同方式的沸石顆粒的內(nèi)部和表面上觀 察到了大量的微生物,突顯出球菌形成的成束或成簇形態(tài)。
【具體實(shí)施方式】
[0014] 本發(fā)明涉及一種通過(guò)添加負(fù)責(zé)有機(jī)物質(zhì)之厭氧降解的顆粒狀沸石-斜發(fā)沸石活 化的污泥來(lái)在上流式厭氧消化器與污泥床(UASB)中進(jìn)行厭氧消化的方法。該沸石以占漿 料總體積的15%至23%的比例添加,該量足以在反應(yīng)器中獲得較好的污泥停留以及所需 量的氮的去除以防止由該化合物導(dǎo)致的抑制量過(guò)程。所用沸石必須是斜發(fā)沸石型,因?yàn)樾?發(fā)沸石因其作為離子交換劑的性能而具有高的去除氨氮的能力。
[0015] 所用沸石-斜發(fā)沸石的粒徑為0· 5mm至2mm。
[0016] 通過(guò)從如圖1所示的消化器的底部添加所需量的材料將反應(yīng)器中沸石-斜發(fā)沸石 的濃度維持在恒定比例。
[0017] 隨著沸石的添加,氮的去除效率持續(xù)降低,而生物氣的產(chǎn)生提高。
[0018] 如下表1所示,就具有高濃度氨氮的廢水而言,氮的去除效率為50%至80%不等。
[0019] 表 1
[0020]
[0021]
【權(quán)利要求】
1. 用于通過(guò)微生物的固定化和受控銨抑制在上流式厭氧消化器與污泥床(UASB)中對(duì) 含有高濃度的氨氮、有機(jī)氮或蛋白質(zhì)的廢水進(jìn)行厭氧消化的方法,其中所述方法包括以下 步驟: a) 用經(jīng)良好消化的污泥接種包含在所述消化器中的含有高濃度的氮或蛋白質(zhì)的廢 水; b) 向來(lái)自步驟a)的殘余經(jīng)接種廢水中添加平均粒徑為0· 5mm至2mm的沸石-斜發(fā)沸 石,其百分比為沸石體積為污泥總體積的15體積%至23體積% ; c) 向從步驟b)得到的顆粒狀活化污泥中添加體積逐漸提高的含有高濃度的氮或蛋白 質(zhì)的廢水,以達(dá)到穩(wěn)定的預(yù)定運(yùn)行條件; d) 在步驟c)的預(yù)定穩(wěn)定運(yùn)行條件下監(jiān)測(cè)所述消化器的運(yùn)行,對(duì)消化器流出物中有機(jī) 物質(zhì)和氨氮的去除、所述消化器中的氮的濃度、消化器流出物中的生物氣產(chǎn)生以及所述生 物氣中甲烷的濃度進(jìn)行定量; e) 在所述消化器中累積的顆粒狀活化污泥中再次添加沸石以檢測(cè)至少所述消化器的 所述流出物中氨氮濃度的提高、去除效率的降低、有機(jī)材料的去除效率的降低或生物氣產(chǎn) 生的降低,將所述消化器中污泥的體積維持恒定在基于所述消化器的總體積的20%的比 例;任選地, f) 從所述消化器的底部除去所產(chǎn)生的過(guò)量的污泥,并通過(guò)使用陽(yáng)光或替代方法使其脫 水,使得獲得含有營(yíng)養(yǎng)物的高濃度材料,所述材料的水分濃度為20%至30%,其可用作生 物肥料或緩慢釋放的肥料營(yíng)養(yǎng)物。
2. 權(quán)利要求1的方法,其中所述含有高濃度氨氮、有機(jī)氮或蛋白質(zhì)的廢水選自農(nóng)業(yè)廢 水或食品工業(yè)的廢水。
3. 權(quán)利要求3的方法,其中家畜來(lái)源的所述含有高濃度氨氮、有機(jī)氮或蛋白質(zhì)的廢水 選自在養(yǎng)豬廠中廣生的廢水或來(lái)自乳制品廠的廢水。
【文檔編號(hào)】C02F3/28GK104211168SQ201410239485
【公開(kāi)日】2014年12月17日 申請(qǐng)日期:2014年5月30日 優(yōu)先權(quán)日:2013年5月30日
【發(fā)明者】西爾維奧·哈辛托·蒙塔爾沃馬丁內(nèi)斯, 恩里克·帕布洛·桑切斯埃爾南德斯, 洛娜·埃琳娜·格雷羅薩爾德斯 申請(qǐng)人:智利圣地亞哥大學(xué)