一種采用濾波器、起電、分離、吸附和離心的過濾裝置的制造方法
【專利摘要】本發(fā)明涉及一種采用濾波器、起電、分離、吸附和離心的過濾裝置,其濾波器、U型微粒分離模塊、回油筒、外桶依次置于底板上;濾波器和U型微粒分離模塊連接,其采用全頻段液壓系統(tǒng)壓力脈動(dòng)濾波器;U型微粒分離模塊包括一U型管,U型管上依次安裝有起電模塊、分離模塊、第一吸附模塊、機(jī)械離心模塊、第二吸附模塊和消磁模塊;U型微粒分離模塊和回油筒的上方通過回油筒進(jìn)油管連接;內(nèi)筒置于外桶內(nèi),其安裝于端蓋上;螺旋流道收容于內(nèi)筒內(nèi),其和U型微粒分離模塊之間通過內(nèi)筒進(jìn)油管連接;內(nèi)筒進(jìn)油管位于回油筒進(jìn)油管內(nèi);濾芯設(shè)置在內(nèi)筒的內(nèi)壁上。本發(fā)明具有過濾性能好,適應(yīng)性和集成性高,使用壽命長(zhǎng)等諸多優(yōu)點(diǎn)。
【專利說明】一種采用濾波器、起電、分離、吸附和離心的過濾裝置 【技術(shù)領(lǐng)域】
[0001] 本發(fā)明涉及一種液壓油過濾裝置,具體涉及一種采用濾波器、起電、分離、吸附和 離心的過濾裝置,屬于液壓設(shè)備技術(shù)領(lǐng)域。 【【背景技術(shù)】】
[0002] 國(guó)內(nèi)外的資料統(tǒng)計(jì)表明,液壓系統(tǒng)的故障大約有70%~85%是由于油液污染引起 的。固體顆粒則是油液污染中最普遍、危害作用最大的污染物。由固體顆粒污染物引起的液 壓系統(tǒng)故障占總污染故障的70%。在液壓系統(tǒng)油液中的顆粒污染物中,金屬磨肩占比在 20%~70%之間。采取有效措施濾除油液中的固體顆粒污染物,是液壓系統(tǒng)污染控制的關(guān) 鍵,也是系統(tǒng)安全運(yùn)行的可靠保證。
[0003] 過濾器是液壓系統(tǒng)濾除固體顆粒污染物的關(guān)鍵元件。液壓油中的固體顆粒污染 物,除油箱可沉淀一部分較大顆粒外,主要靠濾油裝置來濾除。尤其是高壓過濾裝置,主要 用來過濾流向控制閥和液壓缸的液壓油,以保護(hù)這類抗污染能力差的液壓元件,因此對(duì)液 壓油的清潔度要求更高。
[0004] 然而,現(xiàn)有的液壓系統(tǒng)使用的高壓過濾器存在以下不足:(1)各類液壓元件對(duì)油液 的清潔度要求各不相同,油液中的固體微粒的粒徑大小亦各不相同,為此需要在液壓系統(tǒng) 的不同位置安裝多個(gè)不同類型濾波器,由此帶來了成本和安裝復(fù)雜度的問題;(2)液壓系統(tǒng) 中的過濾器主要采用濾餅過濾方式,過濾時(shí)濾液垂直于過濾元件表面流動(dòng),被截流的固體 微粒形成濾餅并逐漸增厚,過濾速度也隨之逐漸下降直至濾液停止流出,降低了過濾元件 的使用壽命。
[0005] 因此,為解決上述技術(shù)問題,確有必要提供一種創(chuàng)新的采用濾波器、起電、分離、吸 附和離心的過濾裝置,以克服現(xiàn)有技術(shù)中的所述缺陷。 【
【發(fā)明內(nèi)容】
】
[0006] 為解決上述技術(shù)問題,本發(fā)明的目的在于提供一種過濾性能好,適應(yīng)性和集成性 高,使用壽命長(zhǎng)的采用濾波器、起電、分離、吸附和離心的過濾裝置。
[0007] 為實(shí)現(xiàn)上述目的,本發(fā)明采取的技術(shù)方案為:一種采用濾波器、起電、分離、吸附和 離心的過濾裝置,其包括底板、濾波器、U型微粒分離模塊、回油筒、內(nèi)筒、螺旋流道、濾芯、外 桶以及端蓋;其中,所述濾波器、U型微粒分離模塊、回油筒、外桶依次置于底板上;所述濾波 器包括輸入管、外殼、輸出管、彈性薄壁、插入式Η型濾波器以及插入式串聯(lián)Η型濾波器;其 中,所述輸入管連接于外殼的一端,其延伸入外殼內(nèi),其和一液壓油進(jìn)口對(duì)接;所述輸出管 連接于外殼的另一端,其延伸入外殼內(nèi),其和U型微粒分離模塊對(duì)接;所述彈性薄壁沿外殼 的徑向安裝于外殼內(nèi);所述輸入管、輸出管和彈性薄壁共同形成一雙管插入式濾波器;所述 彈性薄壁和外殼之間形成串聯(lián)共振容腔I、串聯(lián)共振容腔II以及并聯(lián)共振容腔;所述串聯(lián)共 振容腔I和串聯(lián)共振容腔II之間通過一彈性隔板隔開;所述彈性薄壁的軸向上均勻開有若 干錐形阻尼孔;所述彈性隔板靠近輸入管側(cè)設(shè)有錐形插入管,所述錐形插入管連通串聯(lián)共 振容腔I和串聯(lián)共振容腔II;所述插入式Η型濾波器位于并聯(lián)共振容腔內(nèi),其和錐形阻尼孔 相連通;所述插入式串聯(lián)Η型濾波器位于串聯(lián)共振容腔I和串聯(lián)共振容腔II內(nèi),其亦和錐形 阻尼孔相連通;所述插入式Η型濾波器和插入式串聯(lián)Η型濾波器軸向呈對(duì)稱設(shè)置,并組成插 入式串并聯(lián)Η型濾波器;所述U型微粒分離模塊包括一 U型管,U型管上依次安裝有起電模塊、 分離模塊、第一吸附模塊、機(jī)械離心模塊、第二吸附模塊和消磁模塊;所述U型微粒分離模塊 和回油筒的上方通過一回油筒進(jìn)油管連接;所述內(nèi)筒置于外桶內(nèi),其通過一頂板以及若干 螺栓安裝于端蓋上;所述螺旋流道收容于內(nèi)筒內(nèi),其和U型微粒分離模塊之間通過一內(nèi)筒進(jìn) 油管連接;所述內(nèi)筒進(jìn)油管位于回油筒進(jìn)油管內(nèi),并延伸入U(xiǎn)型微粒分離模塊的中央,其直 徑小于回油筒進(jìn)油管直徑,且和回油筒進(jìn)油管同軸設(shè)置;所述濾芯設(shè)置在內(nèi)筒的內(nèi)壁上,其 精度為1-5微米;所述外桶的底部設(shè)有一液壓油出油口。
[0008] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置進(jìn)一步設(shè)置為:所述輸 入管和輸出管的軸線不在同一軸線上;所述錐形阻尼孔開口較寬處位于串聯(lián)共振容腔I和 并聯(lián)共振容腔內(nèi),其錐度角為10° ;所述錐形插入管開口較寬處位于串聯(lián)共振容腔II內(nèi),其 錐度角為10°;所述彈性薄壁的內(nèi)側(cè)設(shè)有一膠體阻尼層;所述膠體阻尼層的內(nèi)層和外層分別 為外層彈性薄壁和內(nèi)層彈性薄壁,外層彈性薄壁和內(nèi)層彈性薄壁之間由若干支柱固定連 接;所述外層彈性薄壁和內(nèi)層彈性薄壁之間的夾層內(nèi)填充有加防凍劑的純凈水,純凈水內(nèi) 懸浮有多孔硅膠;所述膠體阻尼層靠近輸出管的一端和外殼相連;所述膠體阻尼層靠近輸 出管的一端設(shè)有一活塞。
[0009] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置進(jìn)一步設(shè)置為:所述起 電模塊包括若干電極以及一電極控制器;所述若干電極安裝于第一回油管上,其分別連接 至電極控制器。
[0010] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置進(jìn)一步設(shè)置為:所述分 離模塊采用均勻磁場(chǎng)分離模塊,該均勻磁場(chǎng)分離模塊包括鋁質(zhì)管道、兩個(gè)磁極以及磁極控 制器;其中,所述兩個(gè)磁極分別設(shè)置在鋁質(zhì)管道上,該兩個(gè)磁極的極性相反,并呈相對(duì)設(shè)置; 所述兩個(gè)磁極分別電性連接至磁極控制器上。
[0011] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置進(jìn)一步設(shè)置為:所述分 離模塊采用旋轉(zhuǎn)磁場(chǎng)分離模塊,該旋轉(zhuǎn)磁場(chǎng)分離模塊包括鋁質(zhì)管道、鐵質(zhì)外殼、三相對(duì)稱繞 組以及三相對(duì)稱電流模塊;所述三相對(duì)稱繞組繞在鋁質(zhì)管道外;所述鐵質(zhì)外殼包覆于鋁質(zhì) 管道上;所述三相對(duì)稱電流模塊連接所述三相對(duì)稱繞組。
[0012] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置進(jìn)一步設(shè)置為:所述分 離模塊采用螺旋管道磁場(chǎng)分離模塊,該螺旋管道磁場(chǎng)分離模塊包括鋁質(zhì)螺旋管道、螺線管 以及螺線管控制電路;其中,所述鋁質(zhì)螺旋管道設(shè)置在螺線管內(nèi);所述螺線管和螺線管控制 電路電性連接。
[0013] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置進(jìn)一步設(shè)置為:所述第 一吸附模塊和第二吸吸附模塊采用同極相鄰型吸附環(huán),該同極相鄰型吸附環(huán)包括鋁質(zhì)環(huán)形 管道、正向螺線管、反向螺線管以及鐵質(zhì)導(dǎo)磁帽;所述正向螺線管和反向螺線管分別布置于 鋁質(zhì)環(huán)形管道內(nèi),兩者通有方向相反的電流,使得正向螺線管和反向螺線管相鄰處產(chǎn)生同 性磁極;所述鐵質(zhì)導(dǎo)磁帽布置于鋁質(zhì)環(huán)形管道的內(nèi)壁上,其位于正向螺線管和反向螺線管 相鄰處、以及正向螺線管和反向螺線管軸線的中間點(diǎn)。
[0014] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置進(jìn)一步設(shè)置為:所述第 一吸附模塊和第二吸吸附模塊采用帶電擊錘的同極相鄰型吸附環(huán),該帶電擊錘的同極相鄰 型吸附環(huán)包括鋁質(zhì)環(huán)形管道、正向螺線管、反向螺線管、鐵質(zhì)導(dǎo)磁帽、隔板、電擊錘以及電磁 鐵;所述正向螺線管和反向螺線管分別布置于鋁質(zhì)環(huán)形管道內(nèi),兩者通有方向相反的電流, 使得正向螺線管和反向螺線管相鄰處產(chǎn)生同性磁極;所述鐵質(zhì)導(dǎo)磁帽布置于鋁質(zhì)環(huán)形管道 的內(nèi)壁上,其位于正向螺線管和反向螺線管相鄰處、以及正向螺線管和反向螺線管軸線的 中間點(diǎn);所述隔板位于正向螺線管和反向螺線管之間;所述電擊錘和電磁鐵位于隔板之間; 所述電磁鐵連接并能推動(dòng)電擊錘,使電擊錘敲擊鋁質(zhì)環(huán)形管道內(nèi)壁。
[0015] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置進(jìn)一步設(shè)置為:所述機(jī) 械離心模塊采用旋流離心模塊;所述旋流離心模塊包括旋流管壁、第一導(dǎo)流片、第二導(dǎo)流 片、步進(jìn)電機(jī)以及流量傳感器;其中,所述第一導(dǎo)流片設(shè)有3片,該3片第一導(dǎo)流片沿管壁內(nèi) 圓周隔120°均勻分布,其安放角設(shè)為18°;所述第二導(dǎo)流片和第一導(dǎo)流片結(jié)構(gòu)相同,其設(shè)置 在第一導(dǎo)流片后,并和第一導(dǎo)流片錯(cuò)開60°連接在管壁內(nèi),其安放角設(shè)為36°C;所述第一導(dǎo) 流片的長(zhǎng)邊與管壁相連,短邊沿管壁的軸線延伸;其前緣挫成鈍形,后緣加工成翼形,其高 度為管壁直徑的〇. 4倍,長(zhǎng)度為管壁直徑的1.8倍;所述步進(jìn)電機(jī)連接并驅(qū)動(dòng)第一導(dǎo)流片和 第二導(dǎo)流片,以調(diào)節(jié)安放角;所述流量傳感器設(shè)置在管壁內(nèi)的中央。
[0016] 本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置還設(shè)置為:所述回油筒 的底部設(shè)有一溢流閥,該溢流閥底部設(shè)有一電控調(diào)節(jié)螺絲;所述溢流閥上設(shè)有一排油口,該 排油口通過管道連接至一油箱;所述內(nèi)筒的底部呈倒圓臺(tái)狀,其通過一內(nèi)筒排油管和回油 筒連接,內(nèi)筒排油管上設(shè)有一電控止回閥;所述內(nèi)筒的中央豎直設(shè)有一空心圓柱,空心圓柱 的上方設(shè)有壓差指示器,該壓差指示器安裝于端蓋上;所述內(nèi)筒進(jìn)油管和螺旋流道相切連 接。
[0017] 與現(xiàn)有技術(shù)相比,本發(fā)明具有如下有益效果:
[0018] 1.通過濾波器衰減液壓油的壓力/流量脈動(dòng),使濾芯在工作時(shí)不發(fā)生振動(dòng),以提高 過濾性能;液壓油在U型微粒分離模塊中實(shí)現(xiàn)固體微粒的分離,使油液中的固體微粒向管壁 運(yùn)動(dòng),在U型微粒分離模塊出口處,富含固體微粒的管壁附近的油液通過回油筒進(jìn)油管進(jìn)入 回油筒后回流到油箱,而僅含微量小粒徑微粒的管道中心的油液則通過內(nèi)筒進(jìn)油管進(jìn)入內(nèi) 筒進(jìn)行高精度過濾,提高了濾芯的使用壽命,降低了濾波成本和復(fù)雜度;進(jìn)入內(nèi)筒進(jìn)油管的 油液以切向進(jìn)流的方式流入內(nèi)筒的螺旋流道,內(nèi)筒壁為濾芯,則濾液在離心力的作用下緊 貼濾芯流動(dòng),濾液平行于濾芯的表面快速流動(dòng),過濾后的液壓油則垂直于濾芯表面方向流 出到外筒,這種十字流過濾方式對(duì)濾芯表面的微粒實(shí)施掃流作用,抑制了濾餅厚度的增加, 沉積在內(nèi)筒底部的污染顆粒可定時(shí)通過電控止回閥排出到回油筒,從而提高濾芯使用壽 命。
[0019] 2.通過向電極施加電壓使油液中的顆粒物質(zhì)帶電聚合,并促使膠質(zhì)顆粒分解消 融;通過吸附模塊形成高效吸附;利用機(jī)械離心將油液中的微小顆粒"分離"并聚集到管壁 附近,用吸附裝置捕獲微小顆粒;通過消磁裝置對(duì)殘余顆粒消磁避免危害液壓元件,從而使 油液中固體微粒聚集成大顆粒運(yùn)動(dòng)到管壁附近。
[0020] 3.磁化需要的非均勻磁場(chǎng)的產(chǎn)生,需要多對(duì)正逆線圈對(duì)并通過不同大小的電流, 且電流數(shù)值可在線數(shù)字設(shè)定。 【【附圖說明】】
[0021] 圖1是本發(fā)明的采用濾波器、起電、分離、吸附和離心的過濾裝置的結(jié)構(gòu)示意圖。
[0022] 圖2是圖1中的濾波器的結(jié)構(gòu)示意圖。
[0023]圖3是圖1中沿A-A的剖面圖。
[0024]圖4是圖3中插入式Η型濾波器示意圖。
[0025] 圖5是圖3中插入式串聯(lián)Η型濾波器示意圖。
[0026] 圖6是插入式Η型濾波器和插入式串聯(lián)Η型濾波器頻率特性組合圖。其中,實(shí)線為插 入式串聯(lián)Η型濾波器頻率特性。
[0027] 圖7是插入式串并聯(lián)Η型濾波器頻率特性圖。
[0028] 圖8是雙管插入式濾波器的結(jié)構(gòu)示意圖。
[0029] 圖9是彈性薄壁的橫截面示意圖。
[0030] 圖10是膠體阻尼層的縱截面示意圖。
[0031 ]圖11是圖1中的U型微粒分離模塊的示意圖。
[0032]圖12是圖11中的起電模塊的結(jié)構(gòu)示意圖。
[0033] 圖13是圖11中的分離模塊為均勻磁場(chǎng)分離模塊的結(jié)構(gòu)示意圖。
[0034] 圖14是圖11中的分離模塊為旋轉(zhuǎn)磁場(chǎng)分離模塊的結(jié)構(gòu)示意圖。
[0035] 圖15是圖11中的分離模塊為螺旋管道磁場(chǎng)分離模塊的結(jié)構(gòu)示意圖。
[0036] 圖16是圖11中的第一吸附模塊(第二吸附模塊)為同極相鄰型吸附環(huán)的結(jié)構(gòu)示意 圖。
[0037] 圖17是圖11中的第一吸附模塊(第二吸附模塊)為帶電擊錘的同極相鄰型吸附環(huán) 的結(jié)構(gòu)示意圖。
[0038] 圖18是圖11的機(jī)械離心模塊的橫向示意圖。
[0039 ]圖19是圖11的機(jī)械離心模塊的徑向示意圖。 【【具體實(shí)施方式】】
[0040] 請(qǐng)參閱說明書附圖1至附圖19所示,本發(fā)明為一種采用濾波器、起電、分離、吸附和 離心的過濾裝置,其由底板6、濾波器8、U型微粒分離模塊3、回油筒7、內(nèi)筒15、螺旋流道17、 濾芯18、外桶19以及端蓋25等幾部分組成。其中,所述濾波器8、U型微粒分離模塊2、回油筒 7、外桶19依次置于底板6上。
[0041] 所述濾波器8用于將液壓油輸入,并可衰減液壓系統(tǒng)中的高、中、低頻段的脈動(dòng)壓 力,和抑制流量波動(dòng)。所述濾波器8由輸入管81、外殼89、輸出管811、彈性薄壁87、插入式Η型 濾波器812以及插入式串聯(lián)Η型濾波器813等幾部分組成。
[0042]其中,所述輸入管81連接于外殼89的一端,其延伸入外殼89內(nèi)的長(zhǎng)度為11,其和一 液壓油進(jìn)口 1對(duì)接;所述輸出管811連接于外殼89的另一端,其延伸入外殼89內(nèi)的長(zhǎng)度為12, 其和U型微粒分離模塊3對(duì)接。所述彈性薄壁87沿外殼的徑向安裝于外殼89內(nèi)。所述輸入管 81和輸出管811的軸線不在同一軸線上,這樣可以提高10%以上的濾波效果。
[0043]所述輸入管81、輸出管811和彈性薄壁87共同形成一雙管插入式濾波器,從而衰減 液壓系統(tǒng)高頻壓力脈動(dòng)。按集總參數(shù)法處理后得到的濾波器透射系數(shù)為:
[0044]
[0045] a-介質(zhì)中音速P-流體密度cb-輸入管直徑Z-特性阻抗
[0046]
[0047]
[0048]
[0049]
[0050] d2-輸出管直徑D-容腔直徑h-輸入端插入管長(zhǎng)度12-輸出端插入管長(zhǎng)度 L一容腔總長(zhǎng)度和輸入端輸出端插入管長(zhǎng)度和的差值。
[0051] 由上式可見,雙管插入式容腔濾波器和電路中的電容作用類似。不同頻率的壓力 脈動(dòng)波通過該濾波器時(shí),透射系數(shù)隨頻率而不同。頻率越高,則透射系數(shù)越小,這表明高頻 的壓力脈動(dòng)波在經(jīng)過濾波器時(shí)衰減得越厲害,從而起到了消除高頻壓力脈動(dòng)的作用。
[0052] 所述雙管插入式濾波器的設(shè)計(jì)原理如下:管道中壓力脈動(dòng)頻率較高時(shí),壓力波動(dòng) 作用在流體上對(duì)流體產(chǎn)生壓縮效應(yīng)。當(dāng)變化的流量通過輸入管進(jìn)入雙管插入式容腔時(shí),液 流超過平均流量,擴(kuò)大的容腔可以吸收多余液流,而在低于平均流量時(shí)放出液流,從而吸收 壓力脈動(dòng)能量。
[0053]所述彈性薄壁87通過受迫機(jī)械振動(dòng)來削弱液壓系統(tǒng)中高頻壓力脈動(dòng)。按集總參數(shù) 法處理后得到的彈性薄壁固有頻率為:
[0054]
[0055] k-彈性薄壁結(jié)構(gòu)系數(shù)h-彈性薄壁厚度R-彈性薄壁半徑 [0056] E-彈性薄壁的楊氏模量P-彈性薄壁的質(zhì)量密度
[0057] η-彈性薄壁的載流因子μ-彈性薄壁的泊松比。
[0058]代入實(shí)際參數(shù),對(duì)上式進(jìn)行仿真分析可以發(fā)現(xiàn),彈性薄壁87的固有頻率通常比Η型 濾波器的固有頻率高,而且其衰減頻帶也比Η型濾波器寬。在相對(duì)較寬的頻帶范圍內(nèi),彈性 薄壁對(duì)壓力脈動(dòng)具有良好的衰減效果。同時(shí),本發(fā)明的濾波器結(jié)構(gòu)中的彈性薄壁半徑較大 且較薄,其固有頻率更靠近中頻段,可實(shí)現(xiàn)對(duì)液壓系統(tǒng)中的中高頻壓力脈動(dòng)的有效衰減。 [0059]所述彈性薄壁87的設(shè)計(jì)原理如下:管道中產(chǎn)生中頻壓力脈動(dòng)時(shí),雙管插入式容腔 濾波器對(duì)壓力波動(dòng)的衰減能力較弱,流入雙管插入式容腔的周期性脈動(dòng)壓力持續(xù)作用在彈 性薄壁的內(nèi)外壁上,由于內(nèi)外壁之間有支柱固定連接,內(nèi)外彈性薄壁同時(shí)按脈動(dòng)壓力的頻 率做周期性振動(dòng),該受迫振動(dòng)消耗了流體的壓力脈動(dòng)能量,從而實(shí)現(xiàn)中頻段壓力濾波。由虛 功原理可知,彈性薄壁消耗流體脈動(dòng)壓力能量的能力和其受迫振動(dòng)時(shí)的勢(shì)能和動(dòng)能之和直 接相關(guān),為了提高中頻段濾波性能,彈性薄壁的半徑設(shè)計(jì)為遠(yuǎn)大于管道半徑,且薄壁的厚度 較小,典型值為小于O.lmm。
[0060] 進(jìn)一步的,所述彈性薄壁87和外殼89之間形成串聯(lián)共振容腔184、串聯(lián)共振容腔 1183以及并聯(lián)共振容腔85,所述容腔83、84、85橫跨整個(gè)濾波器,由此可以得到較大的共振 容腔體積,加強(qiáng)衰減效果。所述串聯(lián)共振容腔184和串聯(lián)共振容腔115之間通過一彈性隔板 810隔開。所述彈性薄壁87的軸向上均勻開有若干錐形阻尼孔86,所述錐形阻尼孔86開口較 寬處位于串聯(lián)共振容腔184和并聯(lián)共振容腔85內(nèi),其錐度角為10°。所述彈性隔板810靠近輸 入管81側(cè)設(shè)有錐形插入管82,所述錐形插入管82連通串聯(lián)共振容腔184和串聯(lián)共振容腔 1183。所述錐形插入管82開口較寬處位于串聯(lián)共振容腔1183內(nèi),其錐度角為10°。
[0061] 所述插入式Η型濾波器812位于并聯(lián)共振容腔85內(nèi),其和錐形阻尼孔86相連通。按 集總參數(shù)法處理后得到的濾波器固有角頻率為:
[0062] ⑴
[0063] a-介質(zhì)中音速L一阻尼孔長(zhǎng)S-阻尼孔橫截面積V-并聯(lián)共振容腔體積。
[0064] 所述插入式串聯(lián)Η型濾波器813位于串聯(lián)共振容腔184和串聯(lián)共振容腔1183內(nèi),其 亦和錐形阻尼孔86相連通。按集總參數(shù)法處理后,濾波器的兩個(gè)固有角頻率為:
[0070] a-介質(zhì)中音速h-阻尼孔長(zhǎng)cb-阻尼孔直徑13-插入管長(zhǎng)
[0071] d3-插入管直徑串聯(lián)共振容腔1體積V4-串聯(lián)共振容腔2體積。
[0072] 所述插入式Η型濾波器812和插入式串聯(lián)Η型濾波器813軸向呈對(duì)稱設(shè)置,并組成插 入式串并聯(lián)Η型濾波器,用于展寬濾波頻率范圍并使整體結(jié)構(gòu)更緊湊。本創(chuàng)作沿圓周界面分 布了多個(gè)插入式串并聯(lián)Η型濾波器(圖中只畫出了 2個(gè)),彼此之間用隔板820隔開。
[0073] 由圖6插入式Η型濾波器和插入式串聯(lián)Η型濾波器頻率特性及公式(1)(2)(3)均可 發(fā)現(xiàn),插入式串聯(lián)Η型濾波器有2個(gè)固有角頻率,在波峰處濾波效果較好,而在波谷處則基本 沒有濾波效果;插入式Η型濾波器有1個(gè)固有角頻率,同樣在波峰處濾波效果較好,而在波谷 處則基本沒有濾波效果;選擇合適的濾波器參數(shù),使插入式Η型濾波器的固有角頻率剛好落 在插入式串聯(lián)Η型濾波器的2個(gè)固有角頻率之間,如圖7所示,既在一定的頻率范圍內(nèi)形成了 3個(gè)緊鄰的固有共振頻率峰值,在該頻率范圍內(nèi),無論壓力脈動(dòng)頻率處于波峰處還是波谷處 均能保證較好的濾波效果。多個(gè)插入式串并聯(lián)Η型濾波器構(gòu)成的濾波器組既可覆蓋整個(gè)中 低頻段,實(shí)現(xiàn)中低頻段的全頻譜濾波。
[0074] 所述彈性薄壁87的內(nèi)側(cè)設(shè)有一膠體阻尼層88。所述膠體阻尼層88的內(nèi)層和外層分 別為外層彈性薄壁81和內(nèi)層彈性薄壁82,外層彈性薄壁81和內(nèi)層彈性薄壁82之間由若干支 柱814固定連接。外層彈性薄壁81和內(nèi)層彈性薄壁82之間的夾層內(nèi)填充有加防凍劑的純凈 水816,純凈水816內(nèi)懸浮有多孔硅膠815。所述膠體阻尼層88靠近輸出管811的一端和外殼 89相連;所述膠體阻尼層88靠近輸出管811的一端還設(shè)有一活塞817。
[0075]由于外層彈性薄壁81和內(nèi)層彈性薄壁82間距很小且由支柱814固定連接,在壓力 脈動(dòng)垂直作用于薄壁時(shí),內(nèi)外壁產(chǎn)生近乎一致的形變,膠體阻尼層厚度幾乎保持不變,對(duì)壓 力脈動(dòng)沒有阻尼作用;膠體阻尼層88的活塞817只感應(yīng)水平方向的流量脈動(dòng),流量脈動(dòng)增強(qiáng) 時(shí),活塞817受壓使膠體阻尼層收縮,擠壓作用使得膠體阻尼層88中的水由納米級(jí)輸送通道 進(jìn)入微米級(jí)中央空隙;流量脈動(dòng)減弱時(shí),活塞817受反壓,此時(shí)膠體阻尼層膨脹,膠體阻尼層 中的水從中央空隙經(jīng)通道排出。在此過程中,由于硅膠815微通道吸附的力學(xué)效應(yīng)、通道表 面分子尺度的粗糙效應(yīng)及化學(xué)非均質(zhì)效應(yīng),活塞跟隨膠體阻尼層收縮和膨脹過程中做"氣-液-固"邊界的界面功,從而對(duì)流量脈動(dòng)實(shí)現(xiàn)衰減,其實(shí)質(zhì)上是一個(gè)并行R型濾波器。該濾波 器相對(duì)于一般的液體阻尼器的優(yōu)勢(shì)在于:它通過"氣-液-固"邊界的界面功的方式衰減流量 脈動(dòng),可以在不產(chǎn)生熱量的情況下吸收大量機(jī)械能,且能量消耗不依賴于活塞速度,衰減效 率有了顯著提高。
[0076] 本發(fā)明還能實(shí)線工況自適應(yīng)壓力脈動(dòng)衰減。當(dāng)液壓系統(tǒng)工況變化時(shí),既執(zhí)行元件 突然停止或運(yùn)行,以及閥的開口變化時(shí),會(huì)導(dǎo)致管路系統(tǒng)的特性阻抗發(fā)生突變,從而使原管 道壓力隨時(shí)間和位置變化的曲線也隨之改變,則壓力峰值的位置亦發(fā)生變化。由于本發(fā)明 的濾波器的軸向長(zhǎng)度設(shè)計(jì)為大于系統(tǒng)主要壓力脈動(dòng)波長(zhǎng),且濾波器的插入式串并聯(lián)Η型濾 波器組的容腔長(zhǎng)度、雙管插入式容腔濾波器的長(zhǎng)度和彈性薄壁的長(zhǎng)度和濾波器軸線長(zhǎng)度相 等,保證了壓力峰值位置一直處于濾波器的有效作用范圍內(nèi);而插入式串并聯(lián)Η型濾波器的 錐形阻尼孔開在彈性薄壁上,沿軸線方向均勻分布,使得壓力峰值位置變化對(duì)濾波器的性 能幾乎沒有影響,從而實(shí)現(xiàn)了工況自適應(yīng)濾波功能??紤]到三種濾波結(jié)構(gòu)軸向尺寸和濾波 器相當(dāng),這一較大的尺寸也保證了液壓濾波器具備較強(qiáng)的壓力脈動(dòng)衰減能力。
[0077] 采用本發(fā)明的壓力脈動(dòng)抑制裝置進(jìn)行液壓脈動(dòng)濾波的方法如下:
[0078] 1),液壓流體通過輸入管進(jìn)入雙管插入式濾波器,擴(kuò)大的容腔吸收多余液流,完成 尚頻壓力脈動(dòng)的濾波;
[0079] 2),通過彈性薄壁87受迫振動(dòng),消耗流體的壓力脈動(dòng)能量,完成中頻壓力脈動(dòng)的濾 波;
[0080] 3 ),通過插入式串并聯(lián)Η型濾波器組,通過錐形阻尼孔、錐形插入管和流體產(chǎn)生共 振,消耗脈動(dòng)能量,完成低頻壓力脈動(dòng)的濾波;
[0081] 4),將濾波器的軸向長(zhǎng)度設(shè)計(jì)為大于液壓系統(tǒng)主要壓力脈動(dòng)波長(zhǎng),且插入式串并 聯(lián)Η型濾波器長(zhǎng)度、雙管插入式濾波器長(zhǎng)度和彈性薄壁87長(zhǎng)度同濾波器長(zhǎng)度相等,使壓力峰 值位置一直處于濾波器的有效作用范圍,實(shí)現(xiàn)系統(tǒng)工況改變時(shí)壓力脈動(dòng)的濾波。
[0082] 所述U型微粒分離模塊3包括一 U型管31,U型管31上依次安裝有起電模塊32、分離 模塊33、第一吸附模塊34、機(jī)械離心模塊36、第二吸附模塊37以及消磁模塊35。
[0083] 所述起電模塊32使油液中的金屬顆粒物質(zhì)帶電,其由若干電極321以及一電極控 制器322組成。所述若干電極321安裝于U型管31上,其分別連接至電極控制器252。所述電極 控制器322電性連接向電極321施加電壓,使油液中的顆粒物質(zhì)帶電。
[0084] 所述分離模塊33使質(zhì)量較大的顆粒帶電聚合并在離心力作用下甩向腔壁,其可采 用均勻磁場(chǎng)分離模塊、旋轉(zhuǎn)磁場(chǎng)分離模塊或螺旋管道磁場(chǎng)分離模塊。
[0085]所述分離模塊33采用均勻磁場(chǎng)分離模塊時(shí),其由鋁質(zhì)管道331、兩個(gè)磁極332以及 磁極控制器333組成。其中,所述兩個(gè)磁極332分別設(shè)置在鋁質(zhì)管道331上,該兩個(gè)磁極332的 極性相反,并呈相對(duì)設(shè)置。所述兩個(gè)磁極332分別電性連接至磁極控制器333上。
[0086]所述均勻磁場(chǎng)分離模塊33的設(shè)計(jì)原理如下:帶電顆粒以速度V流入均勻磁場(chǎng)分離 模塊33,均勾磁場(chǎng)分離模塊33的兩個(gè)磁極332產(chǎn)生和速度V方向垂直的均勾磁場(chǎng),根據(jù)左手 定則,則帶電顆粒在均勻磁場(chǎng)分離模塊33中受到垂直于速度方向和磁場(chǎng)方向的洛侖磁力的 作用,該力不改變帶電顆粒的速率,它只改變帶電顆粒的運(yùn)動(dòng)方向,使帶電顆粒在該力的作 用下向鋁質(zhì)管道331的管壁運(yùn)動(dòng),從而使油液中的顆粒從油液中"分離"出來,向管壁聚集, 便于后續(xù)吸附捕獲。由于油液具有一定的粘性,顆粒向管壁運(yùn)動(dòng)過程中還受到粘性阻力的 作用。為了確保分離效果,需要調(diào)節(jié)磁場(chǎng)強(qiáng)度B使距離管壁最遠(yuǎn)處的顆粒能在分離模塊的作 用時(shí)間內(nèi)運(yùn)動(dòng)到管壁處,定量分析如下:
[0087]假定微粒質(zhì)量為m,速度為v,磁場(chǎng)強(qiáng)度為B,帶電量為q,分離模塊的直徑為D,長(zhǎng)度 為L(zhǎng),則:
[0088]作用在帶電顆粒上的洛侖磁力為
[0089] Fi = qvB
[0090] 帶電顆粒受到的粘性阻力為 [0091 ] Fd = 6JT · η · r · v
[0092] η--液壓油的粘度r--帶電顆粒的半徑v--帶電顆粒運(yùn)動(dòng)速度
[0093] 不是一般性,假定油液中的顆粒進(jìn)入分離模塊時(shí)已達(dá)到穩(wěn)態(tài),則帶電顆粒通過分 離模塊的時(shí)間可近似用下式表示
[0094]
[0095]距離管壁最遠(yuǎn)處的帶電顆粒運(yùn)動(dòng)到管壁處的時(shí)間t2可由下式求解 [0096]
[0097]調(diào)節(jié)B,使得tOts,即可達(dá)到分離效果。
[0098]所述分離模塊33采用旋轉(zhuǎn)磁場(chǎng)分離模塊時(shí),其由鋁質(zhì)管道331、鐵質(zhì)外殼334、三相 對(duì)稱繞組335以及三相對(duì)稱電流模塊336等部件組成。所述三相對(duì)稱繞組335繞在鋁質(zhì)管道 331外。所述鐵質(zhì)外殼334包覆于鋁質(zhì)管道335上。所述三相對(duì)稱電流模塊336連接所述三相 對(duì)稱繞組335。
[0099]所述旋轉(zhuǎn)磁場(chǎng)分離模塊33的設(shè)計(jì)原理如下:帶電顆粒以速度V流入旋轉(zhuǎn)磁場(chǎng)分離 模塊33,三相對(duì)稱電流模塊336使三相對(duì)稱繞組335中流過三相對(duì)稱電流,該電流在鋁質(zhì)管 道331內(nèi)產(chǎn)生旋轉(zhuǎn)磁場(chǎng),帶電顆粒在旋轉(zhuǎn)磁場(chǎng)作用下受到垂直于速度方向和磁場(chǎng)方向的洛 侖磁力的作用,該力不改變帶電顆粒的速率,它只改變帶電顆粒的運(yùn)動(dòng)方向,使帶電顆粒在 該力的作用下以螺旋狀前進(jìn),并向管壁運(yùn)動(dòng)。合理調(diào)節(jié)磁場(chǎng)強(qiáng)度即可使油液中的顆粒從油 液中"分離"出來,聚集在管壁附近,便于后續(xù)吸附捕獲。由于油液具有一定的粘性,顆粒向 管壁運(yùn)動(dòng)過程中還受到粘性阻力的作用。為了確保分離效果,需要使鋁質(zhì)管道331軸線上的 微粒能在分離模塊的作用時(shí)間內(nèi)運(yùn)動(dòng)到管壁處,定量分析如下:
[0100]假定微粒質(zhì)量為m,速度為v,磁場(chǎng)強(qiáng)度為B,帶電量為q,分離模塊的直徑為D,長(zhǎng)度 為L(zhǎng),則:
[0101]作用在帶電顆粒上的洛侖磁力為
[0102] Fi = qvB
[0103] 帶電顆粒受到的粘性阻力為
[0104] Fd = 6JT · η · r · v
[0105] η 液壓油的粘度r 帶電顆粒的半徑v 帶電顆粒運(yùn)動(dòng)速度
[0106] 假定油液中的顆粒進(jìn)入分離模塊時(shí)已達(dá)到穩(wěn)態(tài),則帶電顆粒通過分離模塊的時(shí)間 可近似用下式表示 £
[0107] I,-- V:
[0108] 管道軸線上的帶電顆粒運(yùn)動(dòng)到管壁處的時(shí)間t2可由下式求解
[0109]
[0110] 調(diào)節(jié)B,使得即可達(dá)到分離效果。
[0111]所述分離模塊33采用螺旋管道磁場(chǎng)分離模塊時(shí),其由鋁質(zhì)螺旋管道338、螺線管 339以及螺線管控制電路336組成。其中,所述鋁質(zhì)螺旋管道338設(shè)置在螺線管339內(nèi)。所述螺 線管339和螺線管控制電路336電性連接。所述螺線管控制電路336電性連接至ECU3。
[0112]所述螺旋管道磁場(chǎng)分離模塊33的設(shè)計(jì)原理如下:攜帶帶電顆粒的油液沿鋁質(zhì)螺旋 管道338前進(jìn),從而在管道出口處產(chǎn)生具有一定自旋方向的旋流,質(zhì)量較重的帶電顆粒隨著 油液旋轉(zhuǎn),在離心力的作用下產(chǎn)生向管壁的徑向運(yùn)動(dòng);同時(shí),由于鋁質(zhì)螺旋管道338的入口 方向和通電螺線管339的軸向磁場(chǎng)方向垂直,以速度v進(jìn)入鋁質(zhì)螺旋管道338的帶電顆粒受 到洛侖磁力的作用,方向垂直于磁場(chǎng)方向和鋁質(zhì)螺旋管道338的入口方向。洛侖磁力使帶電 顆粒在管道內(nèi)做螺旋前進(jìn)運(yùn)動(dòng),由于錯(cuò)質(zhì)螺旋管道338的入口方向和磁場(chǎng)方向接近垂直,帶 電顆粒主要作周向旋轉(zhuǎn)運(yùn)動(dòng),而油液則不受影響,從而實(shí)現(xiàn)顆粒從油液中的"分離",以便實(shí) 現(xiàn)對(duì)顆粒的吸附。為保證"分離"效果,需要使鋁質(zhì)管道軸線上的微粒能在分離模塊的作用 時(shí)間內(nèi)運(yùn)動(dòng)到管壁處,定量分析如下:
[0113]假定微粒質(zhì)量為m,速度為V,帶電量為q,鋁質(zhì)螺旋管道的直徑為D,鋁質(zhì)螺旋管道 的匝數(shù)為n,鋁質(zhì)螺旋管道的入口方向和通電螺線管的軸向磁場(chǎng)方向的夾角為Θ,螺線管匝 數(shù)為N,電流為I,磁場(chǎng)強(qiáng)度為B,真空磁導(dǎo)率為μ〇,則:
[0114] 作用在帶電顆粒上的洛侖磁力為
[0115] Fi = qvB
[0116] 帶電顆粒受到的粘性阻力為
[0117] Fd = 6JT · η · r · v
[0118] η 液壓油的粘度r 帶電顆粒的半徑v 帶電顆粒運(yùn)動(dòng)速度
[0119] 帶電顆粒通過分離模塊的時(shí)間可近似用下式表示
[0120]
[0121 ]管道軸線上的帶電顆粒運(yùn)動(dòng)到管壁處的時(shí)間t2可由下式求解 [0122]
[0123]螺線管內(nèi)部的磁場(chǎng)強(qiáng)度可近似為恒值
[0124]
[0125] 調(diào)節(jié)I,使得,即可達(dá)到分離效果。
[0126] 所述第一吸附模塊34用于吸附經(jīng)分離模塊33分離后的磁性聚合大微粒,其可采用 同極相鄰型吸附環(huán),該同極相鄰型吸附環(huán)由鋁質(zhì)環(huán)形管道341、正向螺線管342、反向螺線管 343以及鐵質(zhì)導(dǎo)磁帽344等部件組成。其中,所述正向螺線管342和反向螺線管343分別布置 于鋁質(zhì)環(huán)形管道341,兩者通有方向相反的電流,使得正向螺線管342和反向螺線管343相鄰 處產(chǎn)生同性磁極。所述鐵質(zhì)導(dǎo)磁帽344布置于鋁質(zhì)環(huán)形管道341的內(nèi)壁上,其位于正向螺線 管342和反向螺線管343相鄰處、以及正向螺線管342和反向螺線管343軸線的中間點(diǎn)。
[0127] 所述同極相鄰型吸附環(huán)的設(shè)計(jì)原理如下:通電正向螺線管342、反向螺線管343,相 鄰的正向螺線管342、反向螺線管343通有方向相反的電流,使得正向螺線管342、反向螺線 管343相鄰處產(chǎn)生同性磁極;同時(shí),鋁質(zhì)環(huán)形管道341能夠改善磁路,加大管道內(nèi)壁處的磁場(chǎng) 強(qiáng)度,增強(qiáng)鐵質(zhì)導(dǎo)磁帽344對(duì)顆粒的捕獲吸附能力。各正向螺線管342、反向螺線管343電流 可根據(jù)顆粒的粒徑大小和濃度不同而變化,以獲得最佳吸附性能。
[0128] 進(jìn)一步的,所述第一吸附模塊34也可采用帶電擊錘的同極相鄰型吸附環(huán),該帶電 擊錘的同極相鄰型吸附環(huán)由鋁質(zhì)環(huán)形管道341、正向螺線管342、反向螺線管343、鐵質(zhì)導(dǎo)磁 帽344、隔板345、電擊錘346以及電磁鐵347等部件組成。其中,所述正向螺線管342和反向螺 線管343分別布置于鋁質(zhì)環(huán)形管道341,兩者通有方向相反的電流,使得正向螺線管342和反 向螺線管343相鄰處產(chǎn)生同性磁極。所述鐵質(zhì)導(dǎo)磁帽344布置于鋁質(zhì)環(huán)形管道341的內(nèi)壁上, 其位于正向螺線管342和反向螺線管343相鄰處、以及正向螺線管342和反向螺線管343軸線 的中間點(diǎn)。所述電擊錘346和電磁鐵347位于隔板345之間。所述電磁鐵347連接并能推動(dòng)電 擊錘346,使電擊錘346敲擊錯(cuò)質(zhì)環(huán)形管道342內(nèi)壁。
[0129] 所述帶電擊錘的同極相鄰型吸附環(huán)的設(shè)計(jì)原理如下:通電正向螺線管342、反向螺 線管343,相鄰的正向螺線管342、反向螺線管343通有方向相反的電流,使得正向螺線管 342、反向螺線管343相鄰處產(chǎn)生同性磁極;同時(shí),鋁質(zhì)環(huán)形管道341能夠改善磁路,加大管道 內(nèi)壁處的磁場(chǎng)強(qiáng)度,增強(qiáng)鐵質(zhì)導(dǎo)磁帽344對(duì)顆粒的捕獲吸附能力。各正向螺線管342、反向螺 線管343電流可根據(jù)顆粒的粒徑大小和濃度不同而變化,以獲得最佳吸附性能。而通過電擊 錘346的設(shè)置,防止顆粒在鐵質(zhì)導(dǎo)磁帽344處大量堆積,影響吸附效果。此時(shí),通過電磁鐵347 控制電擊錘346敲擊管道341的內(nèi)壁,使得被吸附的顆粒向兩側(cè)分散開。同時(shí),在清洗管道 341時(shí),電擊錘346的敲擊還可以提高清洗效果。
[0130]所述第一吸附模塊34設(shè)計(jì)成U型,在油液進(jìn)入U(xiǎn)型吸附管道時(shí),顆粒在重力、離心力 的作用下,向一側(cè)管壁移動(dòng),在加上磁場(chǎng)力作用,徑向移動(dòng)速度加快,顆粒吸附的效率得以 提高;在油液離開U型吸附管道上升時(shí),重力和磁場(chǎng)力的合力使得顆粒沿斜向下的方向運(yùn) 動(dòng),延長(zhǎng)了顆粒受力時(shí)間,提高了顆粒吸附的效率。
[0131] 所述機(jī)械離心模塊36使油液中的未被吸附的磁化聚合顆粒在離心作用下被甩向 管壁。所述機(jī)械離心模塊36選用旋流離心模塊36,該旋流離心模塊36采用沿程起旋的方式, 其設(shè)計(jì)原理如下:在管道中設(shè)置一定高度和長(zhǎng)度的扭曲的導(dǎo)流片,并使葉面切線與軸線成 一定角度,因管流邊界發(fā)生改變可使流體產(chǎn)生圓管螺旋流,該螺旋流可分解為繞管軸的周 向流動(dòng)和軸向平直流動(dòng),流體中攜帶的顆粒物產(chǎn)生偏軸線向心螺旋運(yùn)動(dòng)。該旋流離心裝置 36由旋流管壁361、第一導(dǎo)流片362、第二導(dǎo)流片363、步進(jìn)電機(jī)364以及流量傳感器365等幾 部分組成。
[0132] 其中,所述第一導(dǎo)流片362設(shè)有3片,該3片第一導(dǎo)流片362沿管壁361內(nèi)圓周隔120° 均勻分布,其安放角(第一導(dǎo)流片362和旋流管壁361之間的夾角)設(shè)為18°,以保證最佳切向 流動(dòng)。所述第二導(dǎo)流片363和第一導(dǎo)流片362結(jié)構(gòu)相同,其設(shè)置在第一導(dǎo)流片362后,并和第 一導(dǎo)流片362錯(cuò)開60°連接在管壁361內(nèi),其安放角設(shè)為36°C,用于減少阻力并加大周向流動(dòng) 的強(qiáng)度。另外,可根據(jù)實(shí)際分離效果同樣再設(shè)置第三或更多的導(dǎo)流片,安放角逐次增加。所 述步進(jìn)電機(jī)364連接并驅(qū)動(dòng)第一導(dǎo)流片362和第二導(dǎo)流片363,以調(diào)節(jié)安放角,從而可獲得更 好的離心效果,獲知使導(dǎo)流片362、363適應(yīng)不同的工況。所述流量傳感器365設(shè)置在管壁361 內(nèi)的中央,通過讀取流量傳感器365的數(shù)值分析旋流分離效果,并據(jù)此控制步進(jìn)電機(jī)364,步 進(jìn)電機(jī)364調(diào)節(jié)各導(dǎo)流片362、363的安放角,以獲得更加分離效果。
[0133] 所述第二吸附裝置37和所述第一吸附裝置34結(jié)構(gòu)相同,功能和作用機(jī)理亦相同, 其能進(jìn)一步吸附經(jīng)機(jī)械離心模塊36分離的顆粒。
[0134] 所述消磁模塊35給磁化顆粒消磁,防止殘余磁性微粒通過回油筒進(jìn)油管進(jìn)入液壓 回路,對(duì)污染敏感液壓元件造成損傷。
[0135] 所述U型微粒分離模塊3和回油筒7的上方通過一回油筒進(jìn)油管22連接;通過U型微 粒分離模塊3處理后,U型管31管壁附近的油液富含聚合顆粒,通過回油筒進(jìn)油管22進(jìn)入回 油筒7后回流到油箱。
[0136] 所述回油筒7的底部設(shè)有一溢流閥8,該溢流閥8底部設(shè)有一電控調(diào)節(jié)螺絲9;所述 溢流閥8上設(shè)有一排油口 10,該排油口 10通過管道20連接至一油箱11。
[0137] 所述內(nèi)筒15置于外桶19內(nèi),其通過一頂板13以及若干螺栓21安裝于端蓋25上。所 述螺旋流道17收容于內(nèi)筒15內(nèi),其和U型微粒分離模塊3之間通過一內(nèi)筒進(jìn)油管12連接,具 體的說,所述內(nèi)筒進(jìn)油管12和螺旋流道17相切連接。U型管31管道中心的油液僅含微量小粒 徑微粒,通過內(nèi)筒進(jìn)油管12進(jìn)入內(nèi)筒15實(shí)現(xiàn)高精度過濾,從而實(shí)現(xiàn)固體微粒分離。進(jìn)一步 的,所述內(nèi)筒進(jìn)油管12位于回油筒進(jìn)油管22內(nèi),并延伸入U(xiǎn)型微粒分離模塊3的中央,其直徑 小于回油筒進(jìn)油管22直徑,且和回油筒進(jìn)油管22同軸設(shè)置。
[0138] 進(jìn)一步的,所述內(nèi)筒15的底部呈倒圓臺(tái)狀,其通過一內(nèi)筒排油管23和回油筒7連 接,內(nèi)筒排油管23上設(shè)有一電控止回閥24。所述內(nèi)筒15的中央豎直設(shè)有一空心圓柱16,空心 圓柱16的上方設(shè)有壓差指示器14,該壓差指示器14安裝于端蓋25上。
[0139] 所述濾芯18設(shè)置在內(nèi)筒15的內(nèi)壁上,其精度為1-5微米。
[0140] 所述外桶19的底部設(shè)有一液壓油出油口 5,通過液壓油出油口 5將過濾好的液壓油 排出。
[0141 ]在本發(fā)明中,由于U型微粒分離模塊3對(duì)油液內(nèi)固體微粒分離聚合作用,在U型微粒 分離模塊3出口處的油液中,中心的油液僅含微量小粒徑微粒,該部分油液從內(nèi)筒進(jìn)油管12 流入到內(nèi)筒15進(jìn)行高精度過濾;而管壁附近的油液富含聚合顆粒,該部分油液通過回油筒 進(jìn)油管22進(jìn)入回油筒7,再經(jīng)溢流閥8的排油口 10流回油箱11,從而實(shí)現(xiàn)固體微粒按顆粒粒 徑分流濾波。此處,回油筒7和溢流閥8起到了前述的粗濾作用,從而節(jié)省了過濾器個(gè)數(shù),降 低了系統(tǒng)成本和復(fù)雜度。溢流閥8的電控調(diào)節(jié)螺絲9用于調(diào)節(jié)溢流壓力,將其壓力調(diào)整到略 低于過濾出口處壓力,以保證內(nèi)筒15過濾流量。
[0142] 另外,傳統(tǒng)的過濾器主要采用濾餅過濾方式,過濾時(shí)濾液垂直于過濾元件表面流 動(dòng),被截流的固體微粒形成濾餅并逐漸增厚,過濾速度也隨之逐漸下降,直至濾液停止流 出,降低了過濾元件的使用壽命。在本本發(fā)明中,來自內(nèi)筒進(jìn)油管12攜帶小粒徑微粒的濾液 以切向進(jìn)流的方式流入內(nèi)筒15的螺旋流道17,螺旋通道17側(cè)面的內(nèi)筒15壁為高精度濾芯 18,濾液在離心力的作用下緊貼濾芯18表面,濾液平行于濾芯18的表面快速流動(dòng),過濾后的 液壓油則垂直于濾芯18表面方向流出到外筒19,這兩個(gè)流動(dòng)的方向互相垂直交錯(cuò),故稱其 為十字流過濾。濾液的快速流動(dòng)對(duì)聚集在濾芯18表面的微粒施加了剪切掃流作用,從而抑 制了濾餅厚度的增加,使得過濾速度近乎恒定,過濾壓力也不會(huì)隨時(shí)間的流逝而升高,濾芯 的使用壽命因而大幅度提高。隨著過濾時(shí)間的累積,沉積在內(nèi)筒15倒圓臺(tái)底部的污染顆粒 逐步增加,過濾速度緩慢下降,內(nèi)筒15內(nèi)未過濾的濾液沿中心的空心圓筒16上升,此時(shí),壓 差指示器14起作用,監(jiān)控其壓力變化,亦即內(nèi)筒15底部濾芯18的堵塞情況,若超過閾值,則 調(diào)節(jié)電控調(diào)節(jié)螺絲9降低溢流壓力,并同時(shí)打開止回閥24,使內(nèi)筒15底部含較多污染顆粒的 濾液在壓差作用下通過內(nèi)筒排油管23排出到回油筒7,避免了底部濾芯18堵塞狀況惡化,從 而延長(zhǎng)了濾芯18使用壽命。
[0143] 采用上述濾油器對(duì)回流液壓油處理的工藝步驟如下:
[0144] 1),液壓管路中的油液通過濾波器8,濾波器8衰減液壓系統(tǒng)中的高、中、低頻段的 脈動(dòng)壓力,以及抑制流量波動(dòng);
[0145] 2),回流液壓油進(jìn)入U(xiǎn)型微粒分離模塊3的起電模塊32,使油液中的顆粒物質(zhì)帶電, 之后送至分離模塊33;
[0146] 3),通過分離裝置33使油液中的帶電微粒在外力的作用下向管壁聚合,之后回油 送至第一吸附裝置34;
[0147] 4),通過第一吸附模塊34吸附回油中的磁性聚合微粒,之后回油送至機(jī)械離心模 塊36;
[0148] 5),機(jī)械離心模塊36對(duì)未被吸附的磁化微粒進(jìn)行離心,之后回油送至第二吸附模 塊37;
[0149] 6),第二吸附模塊37二次吸附回油中的磁性聚合微粒;
[0150] 7),通過消磁模塊35消除磁性微粒磁性;
[0151] 8),之后U型微粒分離模塊3管壁附近的油液通過回油筒進(jìn)油管22進(jìn)入回油筒7后 回流到油箱,而含微量小粒徑微粒的管道中心的油液則通過內(nèi)筒進(jìn)油管12進(jìn)入內(nèi)筒15進(jìn)行 高精度過濾;
[0152] 9 ),攜帶小粒徑微粒的油液以切向進(jìn)流的方式流入內(nèi)筒15的螺旋流道17,油液在 離心力的作用下緊貼濾芯流動(dòng),并進(jìn)行高精度過濾;
[0153] 10),高精度過濾后的油液排入外筒19,并通過外筒19底部的液壓油出油口 5排出。
[0154] 以上的【具體實(shí)施方式】?jī)H為本創(chuàng)作的較佳實(shí)施例,并不用以限制本創(chuàng)作,凡在本創(chuàng) 作的精神及原則之內(nèi)所做的任何修改、等同替換、改進(jìn)等,均應(yīng)包含在本創(chuàng)作的保護(hù)范圍之 內(nèi)。
【主權(quán)項(xiàng)】
1. 一種采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于:包括底板、濾波 器、U型微粒分離模塊、回油筒、內(nèi)筒、螺旋流道、濾芯、外桶以及端蓋;其中,所述濾波器、U型 微粒分離模塊、回油筒、外桶依次置于底板上;所述濾波器包括輸入管、外殼、輸出管、彈性 薄壁、插入式H型濾波器以及插入式串聯(lián)H型濾波器;其中,所述輸入管連接于外殼的一端, 其延伸入外殼內(nèi),其和一液壓油進(jìn)口對(duì)接;所述輸出管連接于外殼的另一端,其延伸入外殼 內(nèi),其和U型微粒分離模塊對(duì)接;所述彈性薄壁沿外殼的徑向安裝于外殼內(nèi);所述輸入管、輸 出管和彈性薄壁共同形成一雙管插入式濾波器;所述彈性薄壁和外殼之間形成串聯(lián)共振容 腔I、串聯(lián)共振容腔II以及并聯(lián)共振容腔;所述串聯(lián)共振容腔I和串聯(lián)共振容腔II之間通過 一彈性隔板隔開;所述彈性薄壁的軸向上均勻開有若干錐形阻尼孔;所述彈性隔板靠近輸 入管側(cè)設(shè)有錐形插入管,所述錐形插入管連通串聯(lián)共振容腔I和串聯(lián)共振容腔Π ;所述插入 式H型濾波器位于并聯(lián)共振容腔內(nèi),其和錐形阻尼孔相連通;所述插入式串聯(lián)H型濾波器位 于串聯(lián)共振容腔I和串聯(lián)共振容腔II內(nèi),其亦和錐形阻尼孔相連通;所述插入式H型濾波器 和插入式串聯(lián)H型濾波器軸向呈對(duì)稱設(shè)置,并組成插入式串并聯(lián)H型濾波器;所述U型微粒分 離模塊包括一 U型管,U型管上依次安裝有起電模塊、分離模塊、第一吸附模塊、機(jī)械離心模 塊、第二吸附模塊和消磁模塊;所述U型微粒分離模塊和回油筒的上方通過一回油筒進(jìn)油管 連接;所述內(nèi)筒置于外桶內(nèi),其通過一頂板以及若干螺栓安裝于端蓋上;所述螺旋流道收容 于內(nèi)筒內(nèi),其和U型微粒分離模塊之間通過一內(nèi)筒進(jìn)油管連接;所述內(nèi)筒進(jìn)油管位于回油筒 進(jìn)油管內(nèi),并延伸入U(xiǎn)型微粒分離模塊的中央,其直徑小于回油筒進(jìn)油管直徑,且和回油筒 進(jìn)油管同軸設(shè)置;所述濾芯設(shè)置在內(nèi)筒的內(nèi)壁上,其精度為1-5微米;所述外桶的底部設(shè)有 一液壓油出油口。2. 如權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于: 所述輸入管和輸出管的軸線不在同一軸線上;所述錐形阻尼孔開口較寬處位于串聯(lián)共振容 腔I和并聯(lián)共振容腔內(nèi),其錐度角為10° ;所述錐形插入管開口較寬處位于串聯(lián)共振容腔II 內(nèi),其錐度角為10°;所述彈性薄壁的內(nèi)側(cè)設(shè)有一膠體阻尼層;所述膠體阻尼層的內(nèi)層和外 層分別為外層彈性薄壁和內(nèi)層彈性薄壁,外層彈性薄壁和內(nèi)層彈性薄壁之間由若干支柱固 定連接;所述外層彈性薄壁和內(nèi)層彈性薄壁之間的夾層內(nèi)填充有加防凍劑的純凈水,純凈 水內(nèi)懸浮有多孔硅膠;所述膠體阻尼層靠近輸出管的一端和外殼相連;所述膠體阻尼層靠 近輸出管的一端設(shè)有一活塞。3. 如權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于: 所述起電模塊包括若干電極以及一電極控制器;所述若干電極安裝于第一回油管上,其分 別連接至電極控制器。4. 如權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于: 所述分離模塊采用均勻磁場(chǎng)分離模塊,該均勻磁場(chǎng)分離模塊包括鋁質(zhì)管道、兩個(gè)磁極以及 磁極控制器;其中,所述兩個(gè)磁極分別設(shè)置在鋁質(zhì)管道上,該兩個(gè)磁極的極性相反,并呈相 對(duì)設(shè)置;所述兩個(gè)磁極分別電性連接至磁極控制器上。5. 如權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于: 所述分離模塊采用旋轉(zhuǎn)磁場(chǎng)分離模塊,該旋轉(zhuǎn)磁場(chǎng)分離模塊包括鋁質(zhì)管道、鐵質(zhì)外殼、三相 對(duì)稱繞組以及三相對(duì)稱電流模塊;所述三相對(duì)稱繞組繞在鋁質(zhì)管道外;所述鐵質(zhì)外殼包覆 于鋁質(zhì)管道上;所述三相對(duì)稱電流模塊連接所述三相對(duì)稱繞組。6. 如權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于: 所述分離模塊采用螺旋管道磁場(chǎng)分離模塊,該螺旋管道磁場(chǎng)分離模塊包括鋁質(zhì)螺旋管道、 螺線管以及螺線管控制電路;其中,所述鋁質(zhì)螺旋管道設(shè)置在螺線管內(nèi);所述螺線管和螺線 管控制電路電性連接。7. 如權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于: 所述第一吸附模塊和第二吸吸附模塊采用同極相鄰型吸附環(huán),該同極相鄰型吸附環(huán)包括鋁 質(zhì)環(huán)形管道、正向螺線管、反向螺線管以及鐵質(zhì)導(dǎo)磁帽;所述正向螺線管和反向螺線管分別 布置于鋁質(zhì)環(huán)形管道內(nèi),兩者通有方向相反的電流,使得正向螺線管和反向螺線管相鄰處 產(chǎn)生同性磁極;所述鐵質(zhì)導(dǎo)磁帽布置于鋁質(zhì)環(huán)形管道的內(nèi)壁上,其位于正向螺線管和反向 螺線管相鄰處、以及正向螺線管和反向螺線管軸線的中間點(diǎn)。8. 如權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于: 所述第一吸附模塊和第二吸吸附模塊采用帶電擊錘的同極相鄰型吸附環(huán),該帶電擊錘的同 極相鄰型吸附環(huán)包括鋁質(zhì)環(huán)形管道、正向螺線管、反向螺線管、鐵質(zhì)導(dǎo)磁帽、隔板、電擊錘以 及電磁鐵;所述正向螺線管和反向螺線管分別布置于鋁質(zhì)環(huán)形管道內(nèi),兩者通有方向相反 的電流,使得正向螺線管和反向螺線管相鄰處產(chǎn)生同性磁極;所述鐵質(zhì)導(dǎo)磁帽布置于鋁質(zhì) 環(huán)形管道的內(nèi)壁上,其位于正向螺線管和反向螺線管相鄰處、以及正向螺線管和反向螺線 管軸線的中間點(diǎn);所述隔板位于正向螺線管和反向螺線管之間;所述電擊錘和電磁鐵位于 隔板之間;所述電磁鐵連接并能推動(dòng)電擊錘,使電擊錘敲擊鋁質(zhì)環(huán)形管道內(nèi)壁。9. 權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于:所 述機(jī)械離心模塊采用旋流離心模塊;所述旋流離心模塊包括旋流管壁、第一導(dǎo)流片、第二導(dǎo) 流片、步進(jìn)電機(jī)以及流量傳感器;其中,所述第一導(dǎo)流片設(shè)有3片,該3片第一導(dǎo)流片沿管壁 內(nèi)圓周隔120°均勻分布,其安放角設(shè)為18°;所述第二導(dǎo)流片和第一導(dǎo)流片結(jié)構(gòu)相同,其設(shè) 置在第一導(dǎo)流片后,并和第一導(dǎo)流片錯(cuò)開60°連接在管壁內(nèi),其安放角設(shè)為36 °C ;所述第一 導(dǎo)流片的長(zhǎng)邊與管壁相連,短邊沿管壁的軸線延伸;其前緣挫成鈍形,后緣加工成翼形,其 高度為管壁直徑的0.4倍,長(zhǎng)度為管壁直徑的1.8倍;所述步進(jìn)電機(jī)連接并驅(qū)動(dòng)第一導(dǎo)流片 和第二導(dǎo)流片,以調(diào)節(jié)安放角;所述流量傳感器設(shè)置在管壁內(nèi)的中央。10. 權(quán)利要求1所述的采用濾波器、起電、分離、吸附和離心的過濾裝置,其特征在于:所 述回油筒的底部設(shè)有一溢流閥,該溢流閥底部設(shè)有一電控調(diào)節(jié)螺絲;所述溢流閥上設(shè)有一 排油口,該排油口通過管道連接至一油箱;所述內(nèi)筒的底部呈倒圓臺(tái)狀,其通過一內(nèi)筒排油 管和回油筒連接,內(nèi)筒排油管上設(shè)有一電控止回閥;所述內(nèi)筒的中央豎直設(shè)有一空心圓柱, 空心圓柱的上方設(shè)有壓差指示器,該壓差指示器安裝于端蓋上;所述內(nèi)筒進(jìn)油管和螺旋流 道相切連接。
【文檔編號(hào)】F15B21/04GK105889198SQ201610311169
【公開日】2016年8月24日
【申請(qǐng)日】2016年5月12日
【發(fā)明人】何恬
【申請(qǐng)人】浙江工業(yè)職業(yè)技術(shù)學(xué)院