本發(fā)明涉及柴油加氫脫硫脫氮工藝,具體涉及一種采用特定催化劑進行的加氫脫硫脫氮工藝。
背景技術(shù):
進入二十一世紀,燃料油的需求和使用大幅度增長,而其中的含硫化合物所帶來的環(huán)境污染問題,更引起人們的關(guān)注。燃料油中的硫化物經(jīng)發(fā)動機燃燒產(chǎn)生的硫氧化物(SOx)排放到空氣中,產(chǎn)生酸雨和硫酸煙霧型污染等,造成大氣污染。
硫是自然界存在于汽油中的一種有害物質(zhì),北京已于2008年1月1日起率先執(zhí)行相當(dāng)于歐Ⅳ標(biāo)準(zhǔn)的京Ⅳ清潔柴油標(biāo)準(zhǔn)(硫含量≤50mg/g),2016年5月5日,發(fā)改委、財政部、環(huán)保部等七部門發(fā)布關(guān)于印發(fā)《加快成品油質(zhì)量升級工作方案》通知,方案明確擴大車用汽、柴油國五標(biāo)準(zhǔn)執(zhí)行范圍。從原定京津冀、長三角、珠三角區(qū)域重點城市擴大到整個東部地區(qū)11個省市(北京、天津、河北、遼寧、上海、江蘇、浙江、福建、山東、廣東和海南)。2015年10月31日前,東部地區(qū)保供企業(yè)具備生產(chǎn)國五標(biāo)準(zhǔn)車用汽油(含乙醇汽油調(diào)和組分油)、車用柴油的能力。2016年1月1日起,東部地區(qū)全面供應(yīng)符合國五標(biāo)準(zhǔn)的車用汽油(含E10乙醇汽油)、車用柴油(含B5生物柴油)。歐洲已經(jīng)于2009年實行了總硫含量不大于10ppm的歐V柴油標(biāo)準(zhǔn)。所以,生產(chǎn)超低硫含量柴油已經(jīng)成為國內(nèi)煉油企業(yè)所必需面對的現(xiàn)實問題。
目前,生產(chǎn)超低硫含量柴油的方法主要包括加氫精制、氧化脫硫、選擇性吸附、生物脫硫等。但加氫脫硫(HDS)技術(shù)是公認的最有效、最經(jīng)濟的脫硫方法。 研究發(fā)現(xiàn),柴油中最難脫除的有機硫化物是4和(或)4,6位烷基取代的二苯并噻吩類化合物,這類硫化物由于在催化劑活性位上吸附時存在烷基的空間位阻,阻礙了反應(yīng)物分子在吸附活性位上的可接近性,從而使其加氫脫硫活性低;理論研究還發(fā)現(xiàn),Ni、Co、Mo和W硫化物的加氫活性相是層狀堆垛的MoS2和WS2納米粒子,MoS2納米粒子的適度堆垛有助于反應(yīng)物分子在吸附活性位上的可接近性和高活性的Ⅱ類活性相的形成。
目前國外柴油加氫脫硫技術(shù)普遍使用雙元或多元催化劑,屬于中壓深度和超深度一段或兩段脫硫過程,該過程除了脫硫之外,還能降低氮和多環(huán)芳烴,提高十六烷值。其可加工的原料比較廣泛,能加工直餾餾份油,也能加工裂化餾份油。產(chǎn)品硫含量為:采用深度加氫脫硫,低于500μg/g;采用一段超深度加氫脫硫,低于30μg/g。如果采用兩段技術(shù)還可以降低多環(huán)芳烴和提高十六烷值。
日本凱金公司開發(fā)了STARS加氫催化劑技術(shù),在此基礎(chǔ)上工業(yè)化了兩種催化劑,即KF-757柴油超深度脫硫催化劑和具有極高脫硫、脫氮、脫芳及加氫活性的KF-848精制催化劑,不僅適用于加氫精制裝置,而且適用于加氫裂化的原料預(yù)精制、FCC原料加氫預(yù)處理等。對于高壓柴油加氫裝置,其柴油硫含量可以脫除到50ppm或者更低,對降低精制柴油密度及深度脫芳都有極好的效果。
丹麥托普索公司新開發(fā)的催化劑有TK-554(深度脫硫)、TK-574(超深度脫硫)、TK-573(深度脫硫)、TK-907(芳烴飽和及提高十六烷值)和TK-908(芳烴飽和及提高十六烷值)等。其中TK-574高活性鈷鉬催化劑是超深度脫硫催化劑,比TK-544深度脫硫催化劑相對體積活性提高了30%~40%,在生產(chǎn)硫含量500μg/g的柴油裝置上采用TK-544催化劑,可使產(chǎn)品硫含量降至350μg/g。
美國聯(lián)合催化劑公司新開發(fā)了AS-AT脫硫脫氮脫芳烴三功能催化劑,用于柴油深度脫硫脫芳裝置的第二反應(yīng)器(第一反應(yīng)器脫硫脫至50μg/g以下),可使總芳烴脫至10%以下,硫脫至10μg/g以下。典型操作條件為:反應(yīng)溫度316℃,壓力6.18MPa,液時空速小于2h-1,氫油比712。
當(dāng)前國內(nèi)外普遍采用的劣質(zhì)柴油改質(zhì)手段是加氫精制和加氫改質(zhì)。加氫精制可明顯改善產(chǎn)品的顏色和安定性,但受反應(yīng)熱力學(xué)的限制十六烷值提高幅度有限,因此通過加氫精制遠不能滿足企業(yè)對產(chǎn)品十六烷值的要求。針對煉油廠提高劣質(zhì)柴油十六烷值、脫硫脫氮脫芳烴的需求,美國標(biāo)準(zhǔn)公司推出了MHUG加氫改質(zhì)技術(shù)及DN3110加氫精制催化劑、Z5723裂化改質(zhì)催化劑,并于2000年得到第一次工業(yè)應(yīng)用。標(biāo)準(zhǔn)公司的DN3110加氫精制催化劑、Z5723裂化改質(zhì)催化劑是采用CENTINEL技術(shù)和actiCAT預(yù)硫化技術(shù)生產(chǎn)的一種以氧化鋁為擔(dān)體的鎳/鉬預(yù)硫化催化劑,CENTINEL技術(shù)關(guān)鍵是在活性金屬分散方面比一般的催化劑更好,更容易的將金屬氧化物轉(zhuǎn)化為金屬硫化物。而actiCAT部分預(yù)硫化技術(shù),是在催化劑生產(chǎn)中加載硫,在開工時利用催化劑自身攜帶的硫來實現(xiàn)催化劑的硫化,不需要催化劑的干燥,不需要額外注入硫化劑,且活化時間較短,這樣將會使得裝置快速、方便安全地開車。
因此如何提供一種柴油加氫脫硫工藝,能有效將柴油中的硫含量控制在10ppm以下,以滿足國五標(biāo)準(zhǔn),同時能有效脫除柴油中的氮化物,是本領(lǐng)域面臨的一個難題。
技術(shù)實現(xiàn)要素:
本發(fā)明的目的在于提出一種柴油加氫脫硫脫氮工藝,該工藝可以將柴油中 的總硫含量降低到10ppm以下,以滿足柴油國五標(biāo)準(zhǔn)。同時,該工藝采用的催化劑的還使得柴油中氮化物的脫除比較顯著。
為達此目的,本發(fā)明采用以下技術(shù)方案:
一種柴油加氫脫硫脫氮工藝,所述工藝采用固定床反應(yīng)器,固定床反應(yīng)器中裝填有加氫催化劑,所述催化劑包括載體和活性組分。
所述載體為合成骨架結(jié)構(gòu)中摻入雜原子Co2+的MCM-41。
所述活性組分為氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合物。
所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4的混合物;
所述固定床反應(yīng)器的反應(yīng)條件為:反應(yīng)溫度為320-360℃,反應(yīng)壓力6-8MPa,氫油體積比300-600,體積空速1.0-2.5h-1。
MCM-41是有序介孔材料,其孔道呈六方有序排列、大小均勻,孔徑尺寸可隨合成時加入導(dǎo)向劑及合成件的不同在1.5~10nm之間變化,晶格參數(shù)約4.5nm,比孔容約1mL/g,MCM-41孔徑均勻,具有較高的比表面積(1000m2/g)和大的吸附容量(0.7mL/g),有利于有機分子的自由擴散。本發(fā)明經(jīng)過在眾多介孔材料中,比如MCM-22、MCM-36、MCM-48、MCM-49、MCM56,進行對比試驗選擇,發(fā)現(xiàn)只有MCM-41能夠達到本發(fā)明的發(fā)明目的,其他介孔材料都有這樣那樣的缺陷,在應(yīng)用到本發(fā)明中時存在難以克服的技術(shù)困難,因此本發(fā)明選擇用MCM-41作為載體基礎(chǔ)。
純硅MCM-41本身酸性很弱,直接用作催化劑活性較低。因此,本發(fā)明對其進行改性,以增加其催化活性。本發(fā)明對MCM-41介孔分子篩改性的途徑是: 在MCM-41合成過程中,加入Co2+鹽溶液,在MCM-41分子篩骨架結(jié)構(gòu)形成之前,通過同晶取代將Co2+替換部分骨架元素從而嵌入分子篩的骨架中,在整體上改善了MCM-41介孔分子篩的催化活性、吸附以及熱力學(xué)穩(wěn)定性能等。
盡管對MCM-41介孔分子篩進行改性的方法或途徑很多,發(fā)明人發(fā)現(xiàn),本發(fā)明的催化劑只能采用摻雜Co2+的MCM-41作為載體才能實現(xiàn)硫含量控制與辛烷值損失的平衡,發(fā)明人嘗試了在MCM-41中摻雜:Al3+、Fe3+、Zn2+、Ga3+等產(chǎn)生陰離子表面中心的離子,發(fā)現(xiàn)都不能實現(xiàn)所述效果。與發(fā)明人另一改性途徑通過離子交換將Cu2+負載在MCM-41孔道內(nèi)表面相比,本發(fā)明的同晶取代途徑更為穩(wěn)定。盡管所述機理目前并不清楚,但這并不影響本發(fā)明的實施,發(fā)明人根據(jù)已知理論與實驗證實,其與本發(fā)明的活性成分之間存在協(xié)同效應(yīng)。
所述Co2+在MCM-41中的摻雜量必須控制在特定的含量范圍之內(nèi),其摻雜量以重量計,為MCM-41重量的0.56%-0.75%,例如0.57%、0.58%、0.59%、0.6%、0.61%、0.62%、0.63%、0.64%、0.65%、0.66%、0.67%、0.68%、0.69%、0.7%、0.71%、0.72%、0.73%、0.74等。
發(fā)明人發(fā)現(xiàn),在該范圍之外,會導(dǎo)致柴油脫氮和脫硫效果的急劇降低。更令人欣喜的是,當(dāng)Co2+在MCM-41中的摻雜量控制在0.63%-0.72%范圍內(nèi)時,其脫硫能力最強,當(dāng)繪制以Co2+摻雜量為橫軸,以目標(biāo)脫硫效果為縱軸的曲線圖時,該含量范圍內(nèi)硫含量能控制在極低的范圍之內(nèi),其產(chǎn)生的脫硫效果遠遠超出預(yù)期,屬于預(yù)料不到的技術(shù)效果。
所述活性組分的總含量為載體MCM-41重量的1%-15%,優(yōu)選3-12%,進一步優(yōu)選5-10%。例如,所述含量可以為2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。
本發(fā)明中,特別限定活性組分為氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合比例,發(fā)明人發(fā)現(xiàn),不同的混合比例達到的效果完全不同。發(fā)明人發(fā)現(xiàn),氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合比例(摩爾比)為1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的摩爾比在該范圍內(nèi),才能夠?qū)崿F(xiàn)柴油中含硫量控制在10ppm以下且脫氮能力顯著。也就是說,本發(fā)明的四種活性組分只有在摩爾比為1:(0.4-0.6):(0.28-0.45):(0.8-1.2)時,才具備協(xié)同效應(yīng)。除開該摩爾比范圍之外,或者省略或者替換任意一種組分,都不能實現(xiàn)協(xié)同效應(yīng)。
優(yōu)選的,氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的摩爾比為1:(0.45-0.5):(0.35-0.45):(0.8-1.0),進一步優(yōu)選為1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最優(yōu)選1:0.48:0.42:0.95。
本發(fā)明的目的之三在于提供所述催化劑的助催化劑。本發(fā)明所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4(磷酸鈮)的混合物。
盡管在加氫精制特別是加氫脫硫領(lǐng)域,已經(jīng)有成熟的催化助劑,比如P、F和B等,其用于調(diào)節(jié)載體的性質(zhì),減弱金屬與載體間強的相互作用,改善催化劑的表面結(jié)構(gòu),提高金屬的可還原性,促使活性組分還原為低價態(tài),以提高催化劑的催化性能。但上述P、F和B催化助劑在應(yīng)用與本發(fā)明的載體與活性組分時,針對高硫組分,其促進催化脫硫/精制的作用了了。
本發(fā)明經(jīng)過在眾多常用助催化劑組分,以及部分活性組分中進行遴選、復(fù) 配等,最終發(fā)現(xiàn)采用TiO2、CeO2、V2O5和NbOPO4(磷酸鈮)的混合物對本發(fā)明的催化劑促進作用明顯,能顯著提高其水熱穩(wěn)定性,并提高其防結(jié)焦失活能力,從而提高其使用壽命。
所述TiO2、CeO2、V2O5和NbOPO4之間沒有固定的比例,也就是說,TiO2、CeO2、V2O5和NbOPO4每一種各自的含量達到有效量即可。優(yōu)選的,本發(fā)明采用的TiO2、CeO2、V2O5和NbOPO4各自的含量均為(分別為)載體質(zhì)量的1-7%,優(yōu)選2-4%。
盡管本發(fā)明所述的催化助劑之間沒有特定的比例要求,但每一種助劑必須能夠達到有效量的要求,即能夠起到催化助劑作用的含量,例如載體質(zhì)量的1-7%。本發(fā)明在遴選過程中發(fā)現(xiàn),省略或者替換所述助劑中的一種或幾種,均達不到本發(fā)明的技術(shù)效果(提高水熱穩(wěn)定性,減少結(jié)焦提高使用壽命),也就是說,本發(fā)明的催化助劑之間存在特定的配合關(guān)系。
事實上,本發(fā)明曾經(jīng)嘗試將催化助劑中的磷酸鈮NbOPO4替換為五氧化二妮Nb2O5,發(fā)現(xiàn)盡管助劑中也引入了Nb,但其技術(shù)效果明顯低于磷酸鈮NbOPO4,其不僅水熱穩(wěn)定性稍差,其催化劑床層結(jié)焦相對快速,從而導(dǎo)致催化劑孔道堵塞,催化劑床層壓降上升相對較快。本發(fā)明也曾嘗試引入其他磷酸鹽,但這種嘗試盡管引入了磷酸根離子,但同樣存在水熱穩(wěn)定性相對稍差,其催化劑床層結(jié)焦相對快速,從而導(dǎo)致催化劑孔道堵塞,催化劑床層壓降上升相對較快。
盡管本發(fā)明引入催化助劑有如此之多的優(yōu)勢,但本發(fā)明必須說明的是,引入催化助劑僅僅是優(yōu)選方案之一,即使不引入該催化助劑,也不影響本發(fā)明主要發(fā)明目的的實施。不引入本發(fā)明的催化助劑特別是磷酸鈮,其相較于引入催 化助劑的方案,其缺陷僅僅是相對的。即該缺陷是相對于引入催化助劑之后的缺陷,其相對于本發(fā)明之外的其他現(xiàn)有技術(shù),本發(fā)明所提及的所有優(yōu)勢或者新特性仍然存在。該催化助劑不是解決本發(fā)明主要技術(shù)問題所不可或缺的技術(shù)手段,其只是對本發(fā)明技術(shù)方案的進一步優(yōu)化,解決新的技術(shù)問題。
所述催化劑的制備方法可以采取常規(guī)的浸漬法以及其他替代方法,本領(lǐng)域技術(shù)人員可以根據(jù)其掌握的現(xiàn)有技術(shù)自由選擇,本發(fā)明不再贅述。
優(yōu)選的,所述固定床反應(yīng)器的反應(yīng)條件為:反應(yīng)溫度為340-350℃,反應(yīng)壓力6.5-7.5MPa,氫油體積比400-600,體積空速1.5-2.0h-1。
優(yōu)選的,所述工藝流程包括,柴油與氫氣混合后,經(jīng)可選的換熱器換熱,再經(jīng)加熱爐加熱后進入固定床反應(yīng)器進行加氫脫硫脫氮,反應(yīng)產(chǎn)物經(jīng)氣液分離塔分離??蛇x的,氣相返回與柴油和氫氣混合,液相可進行進一步的精制,例如胺洗、汽提和分餾等。
優(yōu)選的,所述固定床反應(yīng)器包括1-5個催化劑床層,進一步優(yōu)選2-3個催化劑床層。
本發(fā)明的加氫脫硫脫氮工藝通過選取特定的催化劑,所述催化劑通過摻入雜原子Co2+的MCM-41作為載體,以及選取特定比例的氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC作為活性成分,所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4的混合物,使得該催化劑產(chǎn)生協(xié)同效應(yīng),對柴油的加氫脫硫能控制在總硫含量低于5ppm,同時對柴油中的總氮含量控制在10ppm之內(nèi)。
具體實施方式
本發(fā)明通過下述實施例對本發(fā)明的加氫脫硫脫氮工藝進行說明。
實施例1
通過浸漬法制備得到催化劑,載體為摻雜Co2+的MCM-41,Co2+在MCM-41中的摻雜量控制在載體質(zhì)量的0.65%。所述活性組分氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的總含量為載體質(zhì)量的10%,其摩爾比為1:0.4:0.3:0.8。
將所述催化劑裝填入固定床反應(yīng)器,所述反應(yīng)器的反應(yīng)管由內(nèi)徑50mm的不銹鋼制成,催化劑床層設(shè)置為3層,催化劑床層溫度用UGU808型溫控表測量,原材料柴油由北京衛(wèi)星制造廠制造的雙柱塞微量泵連續(xù)輸送,氫氣由高壓氣瓶供給并用北京七星華創(chuàng)D07-11A/ZM氣體質(zhì)量流量計控制流速,催化劑裝填量為2kg。反應(yīng)后的產(chǎn)物經(jīng)水浴室溫冷卻后進行氣液分離。
所用原料為直餾柴油,其總硫含量788μg/g,堿性氮含量為499.8μg/g。
控制反應(yīng)條件為:溫度350℃,反應(yīng)壓力7.0MPa,氫油體積比500,體積空速2h-1。
測試最終的產(chǎn)品,總硫含量降低到3ppm,總堿性氮含量降低到5ppm。
實施例2
通過浸漬法制備得到催化劑,載體為摻雜Co2+的MCM-41,Co2+在MCM-41中的摻雜量控制在載體質(zhì)量的0.7%。所述活性組分氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的總含量為載體質(zhì)量的10%,其摩爾比為1:0.6:0.45):1.2。
其余條件與實施例1相同。
測試最終的產(chǎn)品,總硫含量降低到2ppm,總堿性氮含量降低到5ppm。
對比例1
將實施例1的載體替換為γ-Al2O3,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到26ppm,總堿性氮含量降低到45ppm。
對比例2
將實施例1的載體替換為未摻雜的MCM-41,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到33ppm,總堿性氮含量降低到43ppm。
對比例3
將實施例1的Co2+替換為Zn2+,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到33ppm,總堿性氮含量降低到37ppm。
對比例4
將實施例1中的Co2+在MCM-41中的摻雜量控制在載體質(zhì)量的0.5%,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到37ppm,總堿性氮含量降低到36ppm。
對比例5
將實施例1中的Co2+在MCM-41中的摻雜量控制在載體質(zhì)量的0.8%,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到43ppm,總堿性氮含量降低到55ppm。
實施例1與對比例1-5表明,本申請采用的特定含量范圍和特定負載金屬離子的MCM-41載體,當(dāng)替換為本領(lǐng)域的其他已知載體時,或者載體相同但Co2+摻雜量不同時,均達不到本發(fā)明的技術(shù)效果,因此本發(fā)明的特定含量范圍的Co2+摻雜MCM-41載體與催化劑其他組分之間具備協(xié)同效應(yīng),所述加氫脫硫脫氮工藝產(chǎn)生了預(yù)料不到的技術(shù)效果。
對比例6
省略實施例1中的MO2N,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到44ppm,總堿性氮含量降低到51ppm。
對比例7
省略實施例1中的WC,其余條件不變。
測試最終的產(chǎn)品,總硫含量降低到41ppm,總堿性氮含量降低到56ppm。
上述實施例及對比例6-7說明,本發(fā)明的加氫脫硫工藝的催化劑幾種活性組分之間存在特定的聯(lián)系,省略或替換其中一種或幾種,都不能達到本申請的特定效果,證明其產(chǎn)生了協(xié)同效應(yīng)。
實施例3
催化劑中含有催化助劑TiO2、CeO2、V2O5和NbOPO4,其含量分別為1%、1.5%、1%和3%,其余與實施例1相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降無任何變化,相較于同樣使用時間實施例1的催化劑床層壓降減少19%。
對比例8
相較于實施例3,將其中的NbOPO4省略,其余條件相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降升高,相較于同樣使用時間實施例1的催化劑床層壓降只減少4%。
對比例9
相較于實施例3,將其中的CeO2省略,其余條件相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降升高,相較于同樣使 用時間實施例1的催化劑床層壓降只減少1%。
實施例3與對比例8-9表明,本發(fā)明的催化助劑之間存在協(xié)同關(guān)系,當(dāng)省略或替換其中一個或幾個組分時,都不能達到本發(fā)明加入催化助劑時的減少結(jié)焦從而阻止催化劑床層壓降升高的技術(shù)效果。即,其驗證了本發(fā)明的催化助劑能夠提高所述催化劑的使用壽命,而其他催化助劑效果不如該特定催化助劑。
申請人聲明,本發(fā)明通過上述實施例來說明本發(fā)明的工藝,但本發(fā)明并不局限于上述工藝,即不意味著本發(fā)明必須依賴上述詳細催化劑才能實施。所屬技術(shù)領(lǐng)域的技術(shù)人員應(yīng)該明了,對本發(fā)明的任何改進,對本發(fā)明產(chǎn)品各原料的等效替換及輔助成分的添加、具體方式的選擇等,均落在本發(fā)明的保護范圍和公開范圍之內(nèi)。