国产精品1024永久观看,大尺度欧美暖暖视频在线观看,亚洲宅男精品一区在线观看,欧美日韩一区二区三区视频,2021中文字幕在线观看

  • <option id="fbvk0"></option>
    1. <rt id="fbvk0"><tr id="fbvk0"></tr></rt>
      <center id="fbvk0"><optgroup id="fbvk0"></optgroup></center>
      <center id="fbvk0"></center>

      <li id="fbvk0"><abbr id="fbvk0"><dl id="fbvk0"></dl></abbr></li>

      一種汽車類零件夾具設計認證方法_2

      文檔序號:9708532閱讀:來源:國知局
      ] 其中#為坐標軸間的夾角余弦。
      [0034] 3)確立3個定位銷的最小幾何基準要素,其各自對應的自由度如圖4所示,即:DOFs (Ci) = {σζ+, -,εζ+' -},D0Fs(C2) = {〇y+, -,ey+' -},D0Fs(D) = {σζ+'一}
      [0035] 4)對組合定位銷的自由度分析:①當圓柱面定位銷Ci與棱形面定位銷D組合,產(chǎn)生 的自由度計算公式為:
      [0036] DOFs (Ci)ΠDOFs(D)
      [0037] ={x:xeCiAxeD}
      [0038] ={σζ+' -,εζ+'-n〇z+' -}
      [0039] =σζΑ+,-
      [0040] 此時只產(chǎn)生z軸正負兩個方向的位移自由度,而不存在旋轉自由度。②當圓柱面定 位銷&與棱形面定位銷D組合,產(chǎn)生的自由度計算公式為:
      [0041 ] D0Fs(C2) nDOFs(D)
      [0042] = {x: xEC2 Λ xED}
      [0043] ={0y+' -,ey+'-ησζ+' -}
      [0044] =〇
      [0045] 5)根據(jù)分析考慮包括夾具對工件支撐的方向性,故該夾具所設計定位銷限定的約 束自由度為:rf = 6+'--|f = D0Fs(Ci) nD0Fs(C2) nD0Fs(D) = 6+' -
      [0046] 判定該夾具可提供的約束自由度為6個,同時包括各軸的正負方向性。
      【主權項】
      1. 一種汽車類零件的夾具設計認證方法,其特征在于:該方法利用與拓撲和工藝相關 表面理論,該理論將所有的幾何形狀表面劃分為七大類,每一類表面由最小幾何基準要素 定義,這樣夾具所提供的約束自由度通過簡單的布爾運算獲得,實現(xiàn)計算機集成;在夾具認 證過程中,任何復雜形狀的定位銷可以抽象成為最基本的點、線、面的一種或任意幾種的組 合形式,即7中基本表面類型中的任意一類;根據(jù)幾何規(guī)范標準中的定義進而獲得每個定位 銷的空間自由度的方向、形式以及個數(shù),再通過布爾運算可計算出夾具能夠提供的約束自 由度條件; 通過新一代產(chǎn)品幾何規(guī)范標準中的拓撲與工藝相關聯(lián)表面理論將不同形狀的定位銷 劃分為7種基本表面類型中的任意一類; 7種基本表面類型中每一類中的點、線、面的組合形式由產(chǎn)品與幾何技術規(guī)范標準中定 義的最小幾何基準要素確定; 夾具中每個定位銷提供的運動自由度由產(chǎn)品幾何規(guī)范標準中的拓撲與工藝相關聯(lián)表 面理論唯一確定; 夾具能夠提供的約束自由度條件由對定位銷的運動自由度的布爾運算計算獲得; 夾具的定位銷對工件的支撐定位過程用產(chǎn)品幾何規(guī)范來解釋就是配合表面限制工件 的自由度的過程;每個工件在歐幾里得空間里有6個空間自由度,3個平移運動自由度和3個 旋轉自由度,通過配置定位銷的類型與個數(shù)使工件減少1個或多個自由度從而限定其在空 間中的運動;由最小幾何基準要素定義可以將空間的幾何表面形狀劃分為7類,即平面類、 球面類、圓柱面類、棱柱面類、回轉面類、螺紋面類以及自由表面類;相應的該7類表面提供 的自由度為3個自由度(2個平移1個旋轉)、3個自由度(3個旋轉)、2個自由度(1個平移1個旋 轉)、1個自由度(1個平移)、1個自由度(1個旋轉)、1個自由度(1個旋轉)以及〇個自由度; 在夾具設計過程中驗證定位銷的設計是否合理,即其提供的約束自由度和夾具的功能 需求是否一致的判斷可通過拓撲和工藝相關表面技術結合簡單的布爾運算實現(xiàn);其具體過 程為:①根據(jù)最小幾何基準要素定義將所有的定位銷劃分為7類基本幾何表面形狀中的任 意一類;這樣能夠?qū)⒉煌螤畹亩ㄎ讳N根據(jù)其幾何內(nèi)蘊性劃分為7類表面形狀中的任意一 類或幾類的組合形式,從而簡化了幾何形狀對定位作用的影響,而抽象為最小幾何基準要 素,即點、線、面和其組合形式;②根據(jù)基本幾何表面形狀判定每個定位銷所提供的自由度; 根據(jù)定位銷的表面類型,即通過最小幾何基準要素通過數(shù)學方式無歧義的定義每個定位表 面的自由度,從而避免了傳統(tǒng)方法依靠經(jīng)驗以及"具體問題具體分析"的人為參與的判斷方 法,③建立夾具的局部空間坐標系并通過布爾運算計算夾具定位銷所能提供的約束自由度 的個數(shù)及方向通過建立坐標系確定自由度的方向及正負從而實現(xiàn)自由度的布爾運算,該方 法能夠支持夾具自由度的數(shù)學計算便于實現(xiàn)計算機集成;④對夾具設計合格性認證;由于 主流計算機輔助設計軟件中使用拓撲和工藝表面相關技術獲取幾何特征對象,因此,通過 該方法對夾具進行合格性認證便于數(shù)據(jù)傳遞以及計算機集成; 以上夾具設計認證過程用數(shù)學形式表示為如下過程:定義夾具上有η個定位銷,各定位 銷分別表示為Li,L2. . .Ln;對其建立空間坐標系后找出相應的最小幾何基準要素,從而根據(jù) 拓撲與工藝相關表面定義將自由度表示為€=[<'「廠,^,<'<'^7的形式,則11個 定位銷所能夠產(chǎn)生的自由度為: Cf = DOFs(Li) nDOFs(L2) nDOFs(Lm) nDOFs(Ln) ={x :xELl Λ xEL2 Λ xELmA xELn} 而相應的夾具對工件產(chǎn)生的約束自由度rf為rf=6+,4f。2.根據(jù)權利要求1所述的一種汽車類零件的夾具設計認證方法,其特征在于:當一個夾 具上存在3個定位銷,其中2個為圓柱形銷以及1個為不規(guī)則形狀的棱形銷D,且圓柱銷 的安置方位不同時,則該夾具能夠限定的工件運動自由度r f的求解過程為: 1) 首先分別對這兩種定位銷進行曲面類型劃分;圓柱銷劃分為圓柱曲面類,棱形銷劃 分為棱形曲面類; 2) 建立夾具以及每個定位銷的局部坐標系;通過轉換矩陣建立工件與各個定位銷的矩 陣轉換關系為: X x' cos φ sin^? 0 Q y y' -sin 6? cos o 0 0 ~M , M ~ ' z z7 0 0 1 0 _i J L1」 L 〇 〇 〇 i_ 其中於為坐標軸間的夾角余弦; 3) 確立3個定位銷的最小幾何基準要素,其各自對應的自由度即: DOFs(Ci) = {σζ+'一,εζ+'一},D0Fs(C2) = {〇y+, -,ey+' -},D0Fs(D) = {σζ+'一} 4) 對組合定位銷的自由度分析:①當圓柱面定位銷&與棱形面定位銷D組合,產(chǎn)生的自 由度計算公式為: DOFs(Ci) nDOFs(D) ={x :xECi Λ xED} ={σζ+'一,εζ+'- Π 〇z+' -} = σζΑ+' - 此時只產(chǎn)生ζ軸正負兩個方向的位移自由度,而不存在旋轉自由度;②當圓柱面定位銷 C2與棱形面定位銷D組合,產(chǎn)生的自由度計算公式為: D0Fs(C2) nDOFs(D) ={x :xEC2 Λ xED} =!>y+' -,ey+'-Πσζ+'-} =0 根據(jù)分析考慮包括夾具對工件支撐的方向性,故該夾具所設計定位銷限定的約束自由 度為: ξ'? = 6+'--|f = D0Fs(Ci) HD0Fs(C2) nD0Fs(D)=6+' - 判定該夾具可提供的約束自由度為6個,同時包括各軸的正負方向性。
      【專利摘要】本發(fā)明涉及一種汽車類零件夾具設計認證方法,屬于精密測量領域。本發(fā)明提出了一種新型的夾具設計的認證方法,這種方法很好的解決了夾具在設計過程中由于定位銷的類型以及安裝方位不當而產(chǎn)生的約束不足或過度約束等問題。該發(fā)明利用新一代產(chǎn)品幾何規(guī)范設計標準中的拓撲相關表面集理論,將最小幾何基準要素概念應用于夾具的設計認證過程,通過該方法可以使得形狀復雜的定位銷能夠抽象為簡單的點線面或其某種組合形式,并可將約束的自由度通過簡單的布爾運算獲得,替代了傳統(tǒng)方法中需憑經(jīng)驗或人為參與判斷檢定夾具的約束條件,適用于數(shù)據(jù)傳遞與計算機集成應用。
      【IPC分類】G06F17/50
      【公開號】CN105468835
      【申請?zhí)枴緾N201510809624
      【發(fā)明人】張敏, 石照耀
      【申請人】北京工業(yè)大學
      【公開日】2016年4月6日
      【申請日】2015年11月19日
      當前第2頁1 2 
      網(wǎng)友詢問留言 已有0條留言
      • 還沒有人留言評論。精彩留言會獲得點贊!
      1